Large-scale Unsupervised Semantic Segmentation
- URL: http://arxiv.org/abs/2106.03149v1
- Date: Sun, 6 Jun 2021 15:02:11 GMT
- Title: Large-scale Unsupervised Semantic Segmentation
- Authors: Shang-Hua Gao and Zhong-Yu Li and Ming-Hsuan Yang and Ming-Ming Cheng
and Junwei Han and Philip Torr
- Abstract summary: We propose a new problem of large-scale unsupervised semantic segmentation (LUSS) with a newly created benchmark dataset to track the research progress.
Based on the ImageNet dataset, we propose the ImageNet-S dataset with 1.2 million training images and 40k high-quality semantic segmentation annotations for evaluation.
- Score: 163.3568726730319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Powered by the ImageNet dataset, unsupervised learning on large-scale data
has made significant advances for classification tasks. There are two major
challenges to allow such an attractive learning modality for segmentation
tasks: i) a large-scale benchmark for assessing algorithms is missing; ii)
unsupervised shape representation learning is difficult. We propose a new
problem of large-scale unsupervised semantic segmentation (LUSS) with a newly
created benchmark dataset to track the research progress. Based on the ImageNet
dataset, we propose the ImageNet-S dataset with 1.2 million training images and
40k high-quality semantic segmentation annotations for evaluation. Our
benchmark has a high data diversity and a clear task objective. We also present
a simple yet effective baseline method that works surprisingly well for LUSS.
In addition, we benchmark related un/weakly supervised methods accordingly,
identifying the challenges and possible directions of LUSS.
Related papers
- Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Multi-Task Self-Supervised Learning for Image Segmentation Task [0.0]
The paper presents 1. Self-supervised techniques to boost semantic segmentation performance using multi-task learning with Depth prediction and Surface Normalization.
2. Performance evaluation of the different types of weighing techniques (UW, Nash-MTL) used for Multi-task learning.
arXiv Detail & Related papers (2023-02-05T21:25:59Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Hierarchical Self-Supervised Learning for Medical Image Segmentation
Based on Multi-Domain Data Aggregation [23.616336382437275]
We propose Hierarchical Self-Supervised Learning (HSSL) for medical image segmentation.
We first aggregate a dataset from several medical challenges, then pre-train the network in a self-supervised manner, and finally fine-tune on labeled data.
Compared to learning from scratch, our new method yields better performance on various tasks.
arXiv Detail & Related papers (2021-07-10T18:17:57Z) - Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals [78.12377360145078]
We introduce a novel two-step framework that adopts a predetermined prior in a contrastive optimization objective to learn pixel embeddings.
This marks a large deviation from existing works that relied on proxy tasks or end-to-end clustering.
In particular, when fine-tuning the learned representations using just 1% of labeled examples on PASCAL, we outperform supervised ImageNet pre-training by 7.1% mIoU.
arXiv Detail & Related papers (2021-02-11T18:54:47Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
We present a framework for semi-supervised semantic segmentation, which is enhanced by self-supervised monocular depth estimation from unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset, where all three modules demonstrate significant performance gains.
arXiv Detail & Related papers (2020-12-19T21:18:03Z) - The Devil is in Classification: A Simple Framework for Long-tail Object
Detection and Instance Segmentation [93.17367076148348]
We investigate performance drop of the state-of-the-art two-stage instance segmentation model Mask R-CNN on the recent long-tail LVIS dataset.
We unveil that a major cause is the inaccurate classification of object proposals.
We propose a simple calibration framework to more effectively alleviate classification head bias with a bi-level class balanced sampling approach.
arXiv Detail & Related papers (2020-07-23T12:49:07Z) - Unsupervised Image Classification for Deep Representation Learning [42.09716669386924]
We propose an unsupervised image classification framework without using embedding clustering.
Experiments on ImageNet dataset have been conducted to prove the effectiveness of our method.
arXiv Detail & Related papers (2020-06-20T02:57:06Z) - Reinforced active learning for image segmentation [34.096237671643145]
We present a new active learning strategy for semantic segmentation based on deep reinforcement learning (RL)
An agent learns a policy to select a subset of small informative image regions -- opposed to entire images -- to be labeled from a pool of unlabeled data.
Our method proposes a new modification of the deep Q-network (DQN) formulation for active learning, adapting it to the large-scale nature of semantic segmentation problems.
arXiv Detail & Related papers (2020-02-16T14:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.