Hierarchical Self-Supervised Learning for Medical Image Segmentation
Based on Multi-Domain Data Aggregation
- URL: http://arxiv.org/abs/2107.04886v1
- Date: Sat, 10 Jul 2021 18:17:57 GMT
- Title: Hierarchical Self-Supervised Learning for Medical Image Segmentation
Based on Multi-Domain Data Aggregation
- Authors: Hao Zheng, Jun Han, Hongxiao Wang, Lin Yang, Zhuo Zhao, Chaoli Wang,
Danny Z. Chen
- Abstract summary: We propose Hierarchical Self-Supervised Learning (HSSL) for medical image segmentation.
We first aggregate a dataset from several medical challenges, then pre-train the network in a self-supervised manner, and finally fine-tune on labeled data.
Compared to learning from scratch, our new method yields better performance on various tasks.
- Score: 23.616336382437275
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A large labeled dataset is a key to the success of supervised deep learning,
but for medical image segmentation, it is highly challenging to obtain
sufficient annotated images for model training. In many scenarios, unannotated
images are abundant and easy to acquire. Self-supervised learning (SSL) has
shown great potentials in exploiting raw data information and representation
learning. In this paper, we propose Hierarchical Self-Supervised Learning
(HSSL), a new self-supervised framework that boosts medical image segmentation
by making good use of unannotated data. Unlike the current literature on
task-specific self-supervised pretraining followed by supervised fine-tuning,
we utilize SSL to learn task-agnostic knowledge from heterogeneous data for
various medical image segmentation tasks. Specifically, we first aggregate a
dataset from several medical challenges, then pre-train the network in a
self-supervised manner, and finally fine-tune on labeled data. We develop a new
loss function by combining contrastive loss and classification loss and
pretrain an encoder-decoder architecture for segmentation tasks. Our extensive
experiments show that multi-domain joint pre-training benefits downstream
segmentation tasks and outperforms single-domain pre-training significantly.
Compared to learning from scratch, our new method yields better performance on
various tasks (e.g., +0.69% to +18.60% in Dice scores with 5% of annotated
data). With limited amounts of training data, our method can substantially
bridge the performance gap w.r.t. denser annotations (e.g., 10% vs.~100% of
annotated data).
Related papers
- Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
We propose the PLGDF framework, which builds upon the mean teacher network for segmenting medical images with less annotation.
We propose a novel pseudo-label utilization scheme, which combines labeled and unlabeled data to augment the dataset effectively.
Our framework yields superior performance compared to six state-of-the-art semi-supervised learning methods.
arXiv Detail & Related papers (2023-11-17T06:36:43Z) - GenSelfDiff-HIS: Generative Self-Supervision Using Diffusion for Histopathological Image Segmentation [5.049466204159458]
Self-supervised learning (SSL) is an alternative paradigm that provides some respite by constructing models utilizing only the unannotated data.
In this paper, we propose an SSL approach for segmenting histopathological images via generative diffusion models.
Our method is based on the observation that diffusion models effectively solve an image-to-image translation task akin to a segmentation task.
arXiv Detail & Related papers (2023-09-04T09:49:24Z) - Self-Supervised Pre-Training with Contrastive and Masked Autoencoder
Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging [8.34398674359296]
Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis.
Training such deep learning models requires large and accurate datasets, with annotations for all training samples.
To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning.
arXiv Detail & Related papers (2023-08-12T11:31:01Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation [10.634870214944055]
In medical image segmentation, supervised deep networks' success comes at the cost of requiring abundant labeled data.
We propose a novel volumetric self-supervised learning for data augmentation capable of synthesizing volumetric image-segmentation pairs.
Our work's central tenet benefits from a combined view of one-shot generative learning and the proposed self-supervised training strategy.
arXiv Detail & Related papers (2021-10-05T15:28:42Z) - Large-scale Unsupervised Semantic Segmentation [163.3568726730319]
We propose a new problem of large-scale unsupervised semantic segmentation (LUSS) with a newly created benchmark dataset to track the research progress.
Based on the ImageNet dataset, we propose the ImageNet-S dataset with 1.2 million training images and 40k high-quality semantic segmentation annotations for evaluation.
arXiv Detail & Related papers (2021-06-06T15:02:11Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.