Sum of Ranked Range Loss for Supervised Learning
- URL: http://arxiv.org/abs/2106.03300v1
- Date: Mon, 7 Jun 2021 02:11:27 GMT
- Title: Sum of Ranked Range Loss for Supervised Learning
- Authors: Shu Hu, Yiming Ying, Xin Wang, Siwei Lyu
- Abstract summary: We introduce the sum of ranked range (SoRR) as a general approach to form learning objectives.
A ranked range is a consecutive sequence of sorted values of a set of real numbers.
We explore two applications in machine learning of the minimization of the SoRR framework, namely the AoRR aggregate loss for binary/multi-class classification at the sample level and the TKML individual loss for multi-label/multi-class classification at the label level.
- Score: 47.0464265614452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In forming learning objectives, one oftentimes needs to aggregate a set of
individual values to a single output. Such cases occur in the aggregate loss,
which combines individual losses of a learning model over each training sample,
and in the individual loss for multi-label learning, which combines prediction
scores over all class labels. In this work, we introduce the sum of ranked
range (SoRR) as a general approach to form learning objectives. A ranked range
is a consecutive sequence of sorted values of a set of real numbers. The
minimization of SoRR is solved with the difference of convex algorithm (DCA).
We explore two applications in machine learning of the minimization of the SoRR
framework, namely the AoRR aggregate loss for binary/multi-class classification
at the sample level and the TKML individual loss for multi-label/multi-class
classification at the label level. A combination loss of AoRR and TKML is
proposed as a new learning objective for improving the robustness of
multi-label learning in the face of outliers in sample and labels alike. Our
empirical results highlight the effectiveness of the proposed optimization
frameworks and demonstrate the applicability of proposed losses using synthetic
and real data sets.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Easy Learning from Label Proportions [17.71834385754893]
Easyllp is a flexible and simple-to-implement debiasing approach based on aggregate labels.
Our technique allows us to accurately estimate the expected loss of an arbitrary model at an individual level.
arXiv Detail & Related papers (2023-02-06T20:41:38Z) - The Group Loss++: A deeper look into group loss for deep metric learning [65.19665861268574]
Group Loss is a loss function based on a differentiable label-propagation method that enforces embedding similarity across all samples of a group.
We show state-of-the-art results on clustering and image retrieval on four datasets, and present competitive results on two person re-identification datasets.
arXiv Detail & Related papers (2022-04-04T14:09:58Z) - Evolving Multi-Label Fuzzy Classifier [5.53329677986653]
Multi-label classification has attracted much attention in the machine learning community to address the problem of assigning single samples to more than one class at the same time.
We propose an evolving multi-label fuzzy classifier (EFC-ML) which is able to self-adapt and self-evolve its structure with new incoming multi-label samples in an incremental, single-pass manner.
arXiv Detail & Related papers (2022-03-29T08:01:03Z) - Learning from Label Proportions by Learning with Label Noise [30.7933303912474]
Learning from label proportions (LLP) is a weakly supervised classification problem where data points are grouped into bags.
We provide a theoretically grounded approach to LLP based on a reduction to learning with label noise.
Our approach demonstrates improved empirical performance in deep learning scenarios across multiple datasets and architectures.
arXiv Detail & Related papers (2022-03-04T18:52:21Z) - Learning by Minimizing the Sum of Ranked Range [58.24935359348289]
We introduce the sum of ranked range (SoRR) as a general approach to form learning objectives.
A ranked range is a consecutive sequence of sorted values of a set of real numbers.
We explore two applications in machine learning of the minimization of the SoRR framework, namely the AoRR aggregate loss for binary classification and the TKML individual loss for multi-label/multi-class classification.
arXiv Detail & Related papers (2020-10-05T01:58:32Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
We propose a differentiable approximation to the F-measure and train the network with this objective using standard backpropagation.
We perform experiments on two standard fairness datasets, Adult, Communities and Crime, and also on speech-to-intent detection on the ATIS dataset and speech-to-image concept classification on the Speech-COCO dataset.
In all four of these tasks, F-measure results in improved micro-F1 scores, with absolute improvements of up to 8% absolute, as compared to models trained with the cross-entropy loss function.
arXiv Detail & Related papers (2020-08-08T03:02:27Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z) - Rethinking Curriculum Learning with Incremental Labels and Adaptive
Compensation [35.593312267921256]
Like humans, deep networks have been shown to learn better when samples are organized and introduced in a meaningful order or curriculum.
We propose Learning with Incremental Labels and Adaptive Compensation (LILAC), a two-phase method that incrementally increases the number of unique output labels.
arXiv Detail & Related papers (2020-01-13T21:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.