Wide-Baseline Relative Camera Pose Estimation with Directional Learning
- URL: http://arxiv.org/abs/2106.03336v1
- Date: Mon, 7 Jun 2021 04:46:09 GMT
- Title: Wide-Baseline Relative Camera Pose Estimation with Directional Learning
- Authors: Kefan Chen, Noah Snavely, Ameesh Makadia
- Abstract summary: We introduce DirectionNet, which estimates discrete distributions over the 5D relative pose space using a novel parameterization to make the estimation problem tractable.
We evaluate our model on challenging synthetic and real pose estimation datasets constructed from Matterport3D and InteriorNet.
- Score: 46.21836501895394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern deep learning techniques that regress the relative camera pose between
two images have difficulty dealing with challenging scenarios, such as large
camera motions resulting in occlusions and significant changes in perspective
that leave little overlap between images. These models continue to struggle
even with the benefit of large supervised training datasets. To address the
limitations of these models, we take inspiration from techniques that show
regressing keypoint locations in 2D and 3D can be improved by estimating a
discrete distribution over keypoint locations. Analogously, in this paper we
explore improving camera pose regression by instead predicting a discrete
distribution over camera poses. To realize this idea, we introduce
DirectionNet, which estimates discrete distributions over the 5D relative pose
space using a novel parameterization to make the estimation problem tractable.
Specifically, DirectionNet factorizes relative camera pose, specified by a 3D
rotation and a translation direction, into a set of 3D direction vectors. Since
3D directions can be identified with points on the sphere, DirectionNet
estimates discrete distributions on the sphere as its output. We evaluate our
model on challenging synthetic and real pose estimation datasets constructed
from Matterport3D and InteriorNet. Promising results show a near 50% reduction
in error over direct regression methods.
Related papers
- SCIPaD: Incorporating Spatial Clues into Unsupervised Pose-Depth Joint Learning [17.99904937160487]
We introduce SCIPaD, a novel approach that incorporates spatial clues for unsupervised depth-pose joint learning.
SCIPaD achieves a reduction of 22.2% in average translation error and 34.8% in average angular error for camera pose estimation task on the KITTI Odometry dataset.
arXiv Detail & Related papers (2024-07-07T06:52:51Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views.
We propose a distributed representation of camera pose that treats a camera as a bundle of rays.
Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D.
arXiv Detail & Related papers (2024-02-22T18:59:56Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - CameraPose: Weakly-Supervised Monocular 3D Human Pose Estimation by
Leveraging In-the-wild 2D Annotations [25.05308239278207]
We present CameraPose, a weakly-supervised framework for 3D human pose estimation from a single image.
By adding a camera parameter branch, any in-the-wild 2D annotations can be fed into our pipeline to boost the training diversity.
We also introduce a refinement network module with confidence-guided loss to further improve the quality of noisy 2D keypoints extracted by 2D pose estimators.
arXiv Detail & Related papers (2023-01-08T05:07:41Z) - MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision [72.5863451123577]
We show how to train a neural model that can perform accurate 3D pose and camera estimation.
Our method outperforms both classical bundle adjustment and weakly-supervised monocular 3D baselines.
arXiv Detail & Related papers (2021-08-10T18:39:56Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - Beyond Weak Perspective for Monocular 3D Human Pose Estimation [6.883305568568084]
We consider the task of 3D joints location and orientation prediction from a monocular video.
We first infer 2D joints locations with an off-the-shelf pose estimation algorithm.
We then adhere to the SMPLify algorithm which receives those initial parameters.
arXiv Detail & Related papers (2020-09-14T16:23:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.