SCIPaD: Incorporating Spatial Clues into Unsupervised Pose-Depth Joint Learning
- URL: http://arxiv.org/abs/2407.05283v1
- Date: Sun, 7 Jul 2024 06:52:51 GMT
- Title: SCIPaD: Incorporating Spatial Clues into Unsupervised Pose-Depth Joint Learning
- Authors: Yi Feng, Zizhan Guo, Qijun Chen, Rui Fan,
- Abstract summary: We introduce SCIPaD, a novel approach that incorporates spatial clues for unsupervised depth-pose joint learning.
SCIPaD achieves a reduction of 22.2% in average translation error and 34.8% in average angular error for camera pose estimation task on the KITTI Odometry dataset.
- Score: 17.99904937160487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised monocular depth estimation frameworks have shown promising performance in autonomous driving. However, existing solutions primarily rely on a simple convolutional neural network for ego-motion recovery, which struggles to estimate precise camera poses in dynamic, complicated real-world scenarios. These inaccurately estimated camera poses can inevitably deteriorate the photometric reconstruction and mislead the depth estimation networks with wrong supervisory signals. In this article, we introduce SCIPaD, a novel approach that incorporates spatial clues for unsupervised depth-pose joint learning. Specifically, a confidence-aware feature flow estimator is proposed to acquire 2D feature positional translations and their associated confidence levels. Meanwhile, we introduce a positional clue aggregator, which integrates pseudo 3D point clouds from DepthNet and 2D feature flows into homogeneous positional representations. Finally, a hierarchical positional embedding injector is proposed to selectively inject spatial clues into semantic features for robust camera pose decoding. Extensive experiments and analyses demonstrate the superior performance of our model compared to other state-of-the-art methods. Remarkably, SCIPaD achieves a reduction of 22.2\% in average translation error and 34.8\% in average angular error for camera pose estimation task on the KITTI Odometry dataset. Our source code is available at \url{https://mias.group/SCIPaD}.
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - Toward Accurate Camera-based 3D Object Detection via Cascade Depth
Estimation and Calibration [20.82054596017465]
Recent camera-based 3D object detection is limited by the precision of transforming from image to 3D feature spaces.
This paper aims to address such a fundamental problem of camera-based 3D object detection: How to effectively learn depth information for accurate feature lifting and object localization.
arXiv Detail & Related papers (2024-02-07T14:21:26Z) - NIKI: Neural Inverse Kinematics with Invertible Neural Networks for 3D
Human Pose and Shape Estimation [53.25973084799954]
We present NIKI (Neural Inverse Kinematics with Invertible Neural Network), which models bi-directional errors.
NIKI can learn from both the forward and inverse processes with invertible networks.
arXiv Detail & Related papers (2023-05-15T12:13:24Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D
Object Detection [10.377424252002792]
monocular 3D object detection lacks accurate depth recovery ability.
Deep neural network (DNN) enables monocular depth-sensing from high-level learned features.
We propose a joint semantic and geometric cost volume to model the depth error.
arXiv Detail & Related papers (2022-03-16T11:54:10Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
We propose a novel Pose Orientation Net (PONet) that is able to robustly estimate 3D pose by learning orientations only.
PONet estimates the 3D orientation of these limbs by taking advantage of the local image evidence to recover the 3D pose.
We evaluate our method on multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW.
arXiv Detail & Related papers (2021-12-21T12:48:48Z) - Occlusion-Robust Object Pose Estimation with Holistic Representation [42.27081423489484]
State-of-the-art (SOTA) object pose estimators take a two-stage approach.
We develop a novel occlude-and-blackout batch augmentation technique.
We also develop a multi-precision supervision architecture to encourage holistic pose representation learning.
arXiv Detail & Related papers (2021-10-22T08:00:26Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - VR3Dense: Voxel Representation Learning for 3D Object Detection and
Monocular Dense Depth Reconstruction [0.951828574518325]
We introduce a method for jointly training 3D object detection and monocular dense depth reconstruction neural networks.
It takes as inputs, a LiDAR point-cloud, and a single RGB image during inference and produces object pose predictions as well as a densely reconstructed depth map.
While our object detection is trained in a supervised manner, the depth prediction network is trained with both self-supervised and supervised loss functions.
arXiv Detail & Related papers (2021-04-13T04:25:54Z) - On the role of depth predictions for 3D human pose estimation [0.04199844472131921]
We build a system that takes 2d joint locations as input along with their estimated depth value and predicts their 3d positions in camera coordinates.
Results are produced on neural network that accepts a low dimensional input and be integrated into a real-time system.
Our system can be combined with an off-the-shelf 2d pose detector and a depth map predictor to perform 3d pose estimation in the wild.
arXiv Detail & Related papers (2021-03-03T16:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.