論文の概要: Antipodes of Label Differential Privacy: PATE and ALIBI
- arxiv url: http://arxiv.org/abs/2106.03408v1
- Date: Mon, 7 Jun 2021 08:14:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 17:32:31.560727
- Title: Antipodes of Label Differential Privacy: PATE and ALIBI
- Title(参考訳): ラベル識別プライバシのアンチポッド:PATEとALIBI
- Authors: Mani Malek, Ilya Mironov, Karthik Prasad, Igor Shilov, Florian
Tram\`er
- Abstract要約: 我々は、訓練されたモデルが差分プライバシー(DP)を満たす必要がある、プライバシ保護機械学習(ML)の設定について検討する。
本稿では,Laplace メカニズムと PATE フレームワークに基づく2つの新しいアプローチを提案する。
いくつかの体制において、PATEフレームワークを適応させて、非常に強力なプライバシレベルを達成する方法を示します。
- 参考スコア(独自算出の注目度): 2.2761657094500682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the privacy-preserving machine learning (ML) setting where the
trained model must satisfy differential privacy (DP) with respect to the labels
of the training examples. We propose two novel approaches based on,
respectively, the Laplace mechanism and the PATE framework, and demonstrate
their effectiveness on standard benchmarks.
While recent work by Ghazi et al. proposed Label DP schemes based on a
randomized response mechanism, we argue that additive Laplace noise coupled
with Bayesian inference (ALIBI) is a better fit for typical ML tasks. Moreover,
we show how to achieve very strong privacy levels in some regimes, with our
adaptation of the PATE framework that builds on recent advances in
semi-supervised learning.
We complement theoretical analysis of our algorithms' privacy guarantees with
empirical evaluation of their memorization properties. Our evaluation suggests
that comparing different algorithms according to their provable DP guarantees
can be misleading and favor a less private algorithm with a tighter analysis.
- Abstract(参考訳): トレーニングモデルがトレーニング例のラベルに関して差分プライバシ(DP)を満たす必要があるという、プライバシ保護機械学習(ML)の設定について考察する。
本稿では,Laplace のメカニズムと PATE フレームワークに基づく2つの新しいアプローチを提案し,それらの性能を標準ベンチマークで実証する。
Ghaziらによる最近の作品。
ランダムな応答機構に基づくラベルDPスキームを提案し,ベイズ推論(ALIBI)と付加的なラプラス雑音は典型的なMLタスクに適していると主張した。
さらに,近年の半教師付き学習の進歩を基盤としたPATEフレームワークの適用により,いくつかの制度において,極めて強力なプライバシレベルを実現する方法を示す。
我々は,アルゴリズムのプライバシー保証を理論的に解析し,記憶特性を実証的に評価する。
評価の結果,提案するdp保証に従って異なるアルゴリズムを比較することは誤解を招く可能性があり,より厳密な解析でよりプライベートなアルゴリズムを好むことが示唆された。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Enhancing Trade-offs in Privacy, Utility, and Computational Efficiency through MUltistage Sampling Technique (MUST) [3.0939420223851446]
プライバシ・アンプリフィケーション(PA)のためのサブサンプリング手法のクラスを提案する。
本研究は2段階MUST法におけるPA効果と実用性について包括的に解析する。
MUSTの繰り返し適用に関するプライバシー損失構成分析を行う。
論文 参考訳(メタデータ) (2023-12-20T19:38:29Z) - Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A Unified Framework for Privacy-Preserving Distributed Average Consensus [6.364764301218972]
本稿では適応微分量子化部分空間(ADQSP)という一般手法を提案する。
本研究では,単一の量子化パラメータを変化させることで,提案手法がSMPC型の性能とDP型性能に異なることを示す。
この結果から,従来の分散信号処理ツールを暗号保証に活用する可能性が示唆された。
論文 参考訳(メタデータ) (2023-12-13T07:52:16Z) - Practical Privacy-Preserving Gaussian Process Regression via Secret
Sharing [23.80837224347696]
本稿では秘密共有(SS)に基づくプライバシー保護型GPR手法を提案する。
コンフュージョン補正(confusion-correction)というアイデアを通じて,新たなSSベースの指数演算を導出し,Cholesky分解に基づくSSベースの行列逆変換アルゴリズムを構築する。
実験結果から,データプライバシ保護の前提として,提案手法が妥当な精度と効率を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-06-26T08:17:51Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Regression with Label Differential Privacy [64.21020761920322]
与えられた回帰損失関数の下で最適なラベルDPランダム化機構を導出する。
我々は、最適メカニズムが「ビンのランダム化応答」の形をとることを証明した。
論文 参考訳(メタデータ) (2022-12-12T17:41:32Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Private Alternating Least Squares: Practical Private Matrix Completion
with Tighter Rates [34.023599653814415]
ユーザレベルのプライバシの下で、差分的プライベート(DP)行列補完の問題について検討する。
本稿では,Alternating-Least-Squares (ALS) 方式の差分型を設計する。
論文 参考訳(メタデータ) (2021-07-20T23:19:11Z) - Local Differential Privacy for Bayesian Optimization [12.05395706770007]
局所微分プライバシー(LDP)を保証した非パラメトリックガウス過程におけるブラックボックス最適化について検討する。
具体的には、各ユーザの報酬は、プライバシーを保護するためにさらに悪化し、学習者は、後悔を最小限に抑えるために、破損した報酬にのみアクセスすることができる。
GP-UCBフレームワークとLaplace DP機構に基づく3つのほぼ最適なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-13T21:50:09Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
本稿では,差分プライバシー制約下での校正問題の性質を抽象化する枠組みを提案する。
また、新しいリカレーションアルゴリズム、精度温度スケーリングを設計し、プライベートデータセットの事前処理より優れています。
論文 参考訳(メタデータ) (2020-08-21T18:43:37Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。