Resolution learning in deep convolutional networks using scale-space
theory
- URL: http://arxiv.org/abs/2106.03412v3
- Date: Tue, 24 Oct 2023 14:22:39 GMT
- Title: Resolution learning in deep convolutional networks using scale-space
theory
- Authors: Silvia L.Pintea and Nergis Tomen and Stanley F. Goes and Marco Loog
and Jan C. van Gemert
- Abstract summary: Resolution in deep convolutional neural networks (CNNs) is typically bounded by the receptive field size through filter sizes, and subsampling layers or strided convolutions on feature maps.
We propose to do away with hard-coded resolution hyper- parameters and aim to learn the appropriate resolution from data.
We use scale-space theory to obtain a self-similar parametrization of filters and make use of the N-Jet: a truncated Taylor series to approximate a filter by a learned combination of Gaussian derivative filters.
- Score: 31.275270391367425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resolution in deep convolutional neural networks (CNNs) is typically bounded
by the receptive field size through filter sizes, and subsampling layers or
strided convolutions on feature maps. The optimal resolution may vary
significantly depending on the dataset. Modern CNNs hard-code their resolution
hyper-parameters in the network architecture which makes tuning such
hyper-parameters cumbersome. We propose to do away with hard-coded resolution
hyper-parameters and aim to learn the appropriate resolution from data. We use
scale-space theory to obtain a self-similar parametrization of filters and make
use of the N-Jet: a truncated Taylor series to approximate a filter by a
learned combination of Gaussian derivative filters. The parameter sigma of the
Gaussian basis controls both the amount of detail the filter encodes and the
spatial extent of the filter. Since sigma is a continuous parameter, we can
optimize it with respect to the loss. The proposed N-Jet layer achieves
comparable performance when used in state-of-the art architectures, while
learning the correct resolution in each layer automatically. We evaluate our
N-Jet layer on both classification and segmentation, and we show that learning
sigma is especially beneficial for inputs at multiple sizes.
Related papers
- Enhancing Generalization in Convolutional Neural Networks through Regularization with Edge and Line Features [0.0]
This paper proposes a novel regularization approach to bias Convolutional Neural Networks (CNNs)
Rather than learning arbitrary kernels, we constrain the convolution layers to edge and line detection kernels.
Test accuracies improve by margins of 5-11 percentage points across four challenging fine-grained classification datasets.
arXiv Detail & Related papers (2024-10-22T11:02:32Z) - Memory-efficient particle filter recurrent neural network for object
localization [53.68402839500528]
This study proposes a novel memory-efficient recurrent neural network (RNN) architecture specified to solve the object localization problem.
We take the idea of the classical particle filter and combine it with GRU RNN architecture.
In our experiments, the mePFRNN model provides more precise localization than the considered competitors and requires fewer trained parameters.
arXiv Detail & Related papers (2023-10-02T19:41:19Z) - As large as it gets: Learning infinitely large Filters via Neural Implicit Functions in the Fourier Domain [22.512062422338914]
Recent work in neural networks for image classification has seen a strong tendency towards increasing the spatial context.
We propose a module for studying the effective filter size of convolutional neural networks.
Our analysis shows that, although the proposed networks could learn very large convolution kernels, the learned filters are well localized and relatively small in practice.
arXiv Detail & Related papers (2023-07-19T14:21:11Z) - Filter Pruning for Efficient CNNs via Knowledge-driven Differential
Filter Sampler [103.97487121678276]
Filter pruning simultaneously accelerates the computation and reduces the memory overhead of CNNs.
We propose a novel Knowledge-driven Differential Filter Sampler(KDFS) with Masked Filter Modeling(MFM) framework for filter pruning.
arXiv Detail & Related papers (2023-07-01T02:28:41Z) - Learning Versatile Convolution Filters for Efficient Visual Recognition [125.34595948003745]
This paper introduces versatile filters to construct efficient convolutional neural networks.
We conduct theoretical analysis on network complexity and an efficient convolution scheme is introduced.
Experimental results on benchmark datasets and neural networks demonstrate that our versatile filters are able to achieve comparable accuracy as that of original filters.
arXiv Detail & Related papers (2021-09-20T06:07:14Z) - DNN-Based Topology Optimisation: Spatial Invariance and Neural Tangent
Kernel [7.106986689736828]
We study the SIMP method with a density field generated by a fully-connected neural network, taking the coordinates as inputs.
We show that the use of DNNs leads to a filtering effect similar to traditional filtering techniques for SIMP, with a filter described by the Neural Tangent Kernel (NTK)
arXiv Detail & Related papers (2021-06-10T12:49:55Z) - Compressing Deep CNNs using Basis Representation and Spectral
Fine-tuning [2.578242050187029]
We propose an efficient and straightforward method for compressing deep convolutional neural networks (CNNs)
Specifically, any spatial convolution layer of the CNN can be replaced by two successive convolution layers.
We fine-tune both the basis and the filter representation to directly mitigate any performance loss due to the truncation.
arXiv Detail & Related papers (2021-05-21T16:14:26Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Delving Deeper into Anti-aliasing in ConvNets [42.82751522973616]
Aliasing refers to the phenomenon that high frequency signals degenerate into completely different ones after sampling.
We propose an adaptive content-aware low-pass filtering layer, which predicts separate filter weights for each spatial location and channel group.
arXiv Detail & Related papers (2020-08-21T17:56:04Z) - PSConv: Squeezing Feature Pyramid into One Compact Poly-Scale
Convolutional Layer [76.44375136492827]
Convolutional Neural Networks (CNNs) are often scale-sensitive.
We bridge this regret by exploiting multi-scale features in a finer granularity.
The proposed convolution operation, named Poly-Scale Convolution (PSConv), mixes up a spectrum of dilation rates.
arXiv Detail & Related papers (2020-07-13T05:14:11Z) - Dependency Aware Filter Pruning [74.69495455411987]
Pruning a proportion of unimportant filters is an efficient way to mitigate the inference cost.
Previous work prunes filters according to their weight norms or the corresponding batch-norm scaling factors.
We propose a novel mechanism to dynamically control the sparsity-inducing regularization so as to achieve the desired sparsity.
arXiv Detail & Related papers (2020-05-06T07:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.