Knowledge-aware Deep Framework for Collaborative Skin Lesion
Segmentation and Melanoma Recognition
- URL: http://arxiv.org/abs/2106.03455v1
- Date: Mon, 7 Jun 2021 09:33:45 GMT
- Title: Knowledge-aware Deep Framework for Collaborative Skin Lesion
Segmentation and Melanoma Recognition
- Authors: Xiaohong Wang, Xudong Jiang, Henghui Ding, Yuqian Zhao, Jun Liu
- Abstract summary: Melanoma diagnosis is still a challenging task due to the difficulty of incorporating the useful dermatologist clinical knowledge into the learning process.
We propose a novel knowledge-aware deep framework that incorporates some clinical knowledge into collaborative learning of two important melanoma diagnosis tasks.
Experimental results on two publicly available skin lesion datasets show the effectiveness of the proposed method for melanoma analysis.
- Score: 34.59452639480664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning techniques have shown their superior performance in
dermatologist clinical inspection. Nevertheless, melanoma diagnosis is still a
challenging task due to the difficulty of incorporating the useful
dermatologist clinical knowledge into the learning process. In this paper, we
propose a novel knowledge-aware deep framework that incorporates some clinical
knowledge into collaborative learning of two important melanoma diagnosis
tasks, i.e., skin lesion segmentation and melanoma recognition. Specifically,
to exploit the knowledge of morphological expressions of the lesion region and
also the periphery region for melanoma identification, a lesion-based pooling
and shape extraction (LPSE) scheme is designed, which transfers the structure
information obtained from skin lesion segmentation into melanoma recognition.
Meanwhile, to pass the skin lesion diagnosis knowledge from melanoma
recognition to skin lesion segmentation, an effective diagnosis guided feature
fusion (DGFF) strategy is designed. Moreover, we propose a recursive mutual
learning mechanism that further promotes the inter-task cooperation, and thus
iteratively improves the joint learning capability of the model for both skin
lesion segmentation and melanoma recognition. Experimental results on two
publicly available skin lesion datasets show the effectiveness of the proposed
method for melanoma analysis.
Related papers
- Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
This study focuses on analyzing dermoscopy images to determine the depth of melanomas.
The Breslow depth, measured from the top of the granular layer to the deepest point of tumor invasion, serves as a crucial parameter for staging melanoma and guiding treatment decisions.
Various datasets, including ISIC and private collections, were used, comprising a total of 1162 images.
Results indicated that the models achieved significant improvements over previous methods.
arXiv Detail & Related papers (2024-06-19T11:07:55Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Application of Machine Learning in Melanoma Detection and the
Identification of 'Ugly Duckling' and Suspicious Naevi: A Review [0.45545745874600063]
"Ugly Duckling Naevus" comes into play when monitoring for melanoma, referring to a lesion with distinctive features.
Computer-aided diagnosis (CAD) has become a significant player in the research and development field.
This article extensively covers modern Machine Learning and Deep Learning algorithms for detecting melanoma and suspicious naevi.
arXiv Detail & Related papers (2023-09-01T05:50:47Z) - A Novel Multi-Task Model Imitating Dermatologists for Accurate
Differential Diagnosis of Skin Diseases in Clinical Images [27.546559936765863]
A novel multi-task model, namely DermImitFormer, is proposed to fill this gap by imitating dermatologists' diagnostic procedures and strategies.
The model simultaneously predicts body parts and lesion attributes in addition to the disease itself, enhancing diagnosis accuracy and improving diagnosis interpretability.
arXiv Detail & Related papers (2023-07-17T08:05:30Z) - Explainable Artificial Intelligence Architecture for Melanoma Diagnosis
Using Indicator Localization and Self-Supervised Learning [12.013345715187285]
Melanoma is a prevalent lethal type of cancer that is treatable if diagnosed at early stages of development.
Deep learning can be used as a solution to classify skin lesion pictures with a high accuracy.
We develop an explainable deep learning architecture for melanoma diagnosis which generates clinically interpretable visual explanations.
arXiv Detail & Related papers (2023-03-26T03:43:05Z) - Deep Learning based Novel Cascaded Approach for Skin Lesion Analysis [7.371818587876888]
This research focuses on a two step framework for skin lesion segmentation followed by classification for lesion analysis.
We explored the effectiveness of deep convolutional neural network based architectures by designing an encoder-decoder architecture for skin lesion segmentation and CNN based classification network.
Our cascaded end to end deep learning based approach is the first of its kind, where the classification accuracy of the lesion is significantly improved because of prior segmentation.
arXiv Detail & Related papers (2023-01-16T01:08:32Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.