Efficient Iterative Amortized Inference for Learning Symmetric and
Disentangled Multi-Object Representations
- URL: http://arxiv.org/abs/2106.03630v1
- Date: Mon, 7 Jun 2021 14:02:49 GMT
- Title: Efficient Iterative Amortized Inference for Learning Symmetric and
Disentangled Multi-Object Representations
- Authors: Patrick Emami, Pan He, Sanjay Ranka, Anand Rangarajan
- Abstract summary: We introduce EfficientMORL, an efficient framework for the unsupervised learning of object-centric representations.
We show that optimization challenges caused by requiring both symmetry and disentanglement can be addressed by high-cost iterative amortized inference.
We demonstrate strong object decomposition and disentanglement on the standard multi-object benchmark while achieving nearly an order of magnitude faster training and test time inference.
- Score: 8.163697683448811
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Unsupervised multi-object representation learning depends on inductive biases
to guide the discovery of object-centric representations that generalize.
However, we observe that methods for learning these representations are either
impractical due to long training times and large memory consumption or forego
key inductive biases. In this work, we introduce EfficientMORL, an efficient
framework for the unsupervised learning of object-centric representations. We
show that optimization challenges caused by requiring both symmetry and
disentanglement can in fact be addressed by high-cost iterative amortized
inference by designing the framework to minimize its dependence on it. We take
a two-stage approach to inference: first, a hierarchical variational
autoencoder extracts symmetric and disentangled representations through
bottom-up inference, and second, a lightweight network refines the
representations with top-down feedback. The number of refinement steps taken
during training is reduced following a curriculum, so that at test time with
zero steps the model achieves 99.1% of the refined decomposition performance.
We demonstrate strong object decomposition and disentanglement on the standard
multi-object benchmark while achieving nearly an order of magnitude faster
training and test time inference over the previous state-of-the-art model.
Related papers
- Efficient Alternating Minimization Solvers for Wyner Multi-View
Unsupervised Learning [0.0]
We propose two novel formulations that enable the development of computational efficient solvers based the alternating principle.
The proposed solvers offer computational efficiency, theoretical convergence guarantees, local minima complexity with the number of views, and exceptional accuracy as compared with the state-of-the-art techniques.
arXiv Detail & Related papers (2023-03-28T10:17:51Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
We argue that the key to better performance lies in meaningful latent modality structures instead of perfect modality alignment.
Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization.
arXiv Detail & Related papers (2023-03-10T14:38:49Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
We study the learning dynamics of self-predictive learning for reinforcement learning.
We propose a novel self-predictive algorithm that learns two representations simultaneously.
arXiv Detail & Related papers (2022-12-06T20:43:37Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
We prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations.
Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem.
arXiv Detail & Related papers (2022-11-26T21:02:09Z) - Self-Supervised Learning via Maximum Entropy Coding [57.56570417545023]
We propose Maximum Entropy Coding (MEC) as a principled objective that explicitly optimize on the structure of the representation.
MEC learns a more generalizable representation than previous methods based on specific pretext tasks.
It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking.
arXiv Detail & Related papers (2022-10-20T17:58:30Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations.
We consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning.
We demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
arXiv Detail & Related papers (2022-07-14T18:18:02Z) - Self-Supervised Consistent Quantization for Fully Unsupervised Image
Retrieval [17.422973861218182]
Unsupervised image retrieval aims to learn an efficient retrieval system without expensive data annotations.
Recent advance proposes deep fully unsupervised image retrieval aiming at training a deep model from scratch to jointly optimize visual features and quantization codes.
We propose a novel self-supervised consistent quantization approach to deep fully unsupervised image retrieval, which consists of part consistent quantization and global consistent quantization.
arXiv Detail & Related papers (2022-06-20T14:39:59Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
We propose a deep dimension reduction approach to learning representations with essential characteristics.
The proposed approach is a nonparametric generalization of the sufficient dimension reduction method.
We show that the estimated deep nonparametric representation is consistent in the sense that its excess risk converges to zero.
arXiv Detail & Related papers (2020-06-10T14:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.