Self-Supervised Consistent Quantization for Fully Unsupervised Image
Retrieval
- URL: http://arxiv.org/abs/2206.09806v1
- Date: Mon, 20 Jun 2022 14:39:59 GMT
- Title: Self-Supervised Consistent Quantization for Fully Unsupervised Image
Retrieval
- Authors: Guile Wu, Chao Zhang, and Stephan Liwicki
- Abstract summary: Unsupervised image retrieval aims to learn an efficient retrieval system without expensive data annotations.
Recent advance proposes deep fully unsupervised image retrieval aiming at training a deep model from scratch to jointly optimize visual features and quantization codes.
We propose a novel self-supervised consistent quantization approach to deep fully unsupervised image retrieval, which consists of part consistent quantization and global consistent quantization.
- Score: 17.422973861218182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised image retrieval aims to learn an efficient retrieval system
without expensive data annotations, but most existing methods rely heavily on
handcrafted feature descriptors or pre-trained feature extractors. To minimize
human supervision, recent advance proposes deep fully unsupervised image
retrieval aiming at training a deep model from scratch to jointly optimize
visual features and quantization codes. However, existing approach mainly
focuses on instance contrastive learning without considering underlying
semantic structure information, resulting in sub-optimal performance. In this
work, we propose a novel self-supervised consistent quantization approach to
deep fully unsupervised image retrieval, which consists of part consistent
quantization and global consistent quantization. In part consistent
quantization, we devise part neighbor semantic consistency learning with
codeword diversity regularization. This allows to discover underlying neighbor
structure information of sub-quantized representations as self-supervision. In
global consistent quantization, we employ contrastive learning for both
embedding and quantized representations and fuses these representations for
consistent contrastive regularization between instances. This can make up for
the loss of useful representation information during quantization and
regularize consistency between instances. With a unified learning objective of
part and global consistent quantization, our approach exploits richer
self-supervision cues to facilitate model learning. Extensive experiments on
three benchmark datasets show the superiority of our approach over the
state-of-the-art methods.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - A Bayesian Approach to Weakly-supervised Laparoscopic Image Segmentation [1.9639956888747314]
We study weakly-supervised laparoscopic image segmentation with sparse annotations.
We introduce a novel Bayesian deep learning approach designed to enhance both the accuracy and interpretability of the model's segmentation.
arXiv Detail & Related papers (2024-10-11T04:19:48Z) - An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training.
Previous research has focused on aligning sequences' visual and semantic spatial distributions.
We introduce a new loss function sampling method to obtain a tight and robust representation.
arXiv Detail & Related papers (2024-06-02T06:53:01Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - Modeling Multiple Views via Implicitly Preserving Global Consistency and
Local Complementarity [61.05259660910437]
We propose a global consistency and complementarity network (CoCoNet) to learn representations from multiple views.
On the global stage, we reckon that the crucial knowledge is implicitly shared among views, and enhancing the encoder to capture such knowledge can improve the discriminability of the learned representations.
Lastly on the local stage, we propose a complementarity-factor, which joints cross-view discriminative knowledge, and it guides the encoders to learn not only view-wise discriminability but also cross-view complementary information.
arXiv Detail & Related papers (2022-09-16T09:24:00Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Efficient Iterative Amortized Inference for Learning Symmetric and
Disentangled Multi-Object Representations [8.163697683448811]
We introduce EfficientMORL, an efficient framework for the unsupervised learning of object-centric representations.
We show that optimization challenges caused by requiring both symmetry and disentanglement can be addressed by high-cost iterative amortized inference.
We demonstrate strong object decomposition and disentanglement on the standard multi-object benchmark while achieving nearly an order of magnitude faster training and test time inference.
arXiv Detail & Related papers (2021-06-07T14:02:49Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
We present a method to infer a dense depth map from a color image and associated sparse depth measurements.
We show that regularization and co-visibility are related via the fitness of the model to data and can be unified into a single framework.
arXiv Detail & Related papers (2021-06-06T02:27:55Z) - Information Maximization Clustering via Multi-View Self-Labelling [9.947717243638289]
We propose a novel single-phase clustering method that simultaneously learns meaningful representations and assigns the corresponding annotations.
This is achieved by integrating a discrete representation into the self-supervised paradigm through a net.
Our empirical results show that the proposed framework outperforms state-of-the-art techniques with the average accuracy of 89.1% and 49.0%, respectively.
arXiv Detail & Related papers (2021-03-12T16:04:41Z) - Deep Partial Multi-View Learning [94.39367390062831]
We propose a novel framework termed Cross Partial Multi-View Networks (CPM-Nets)
We fifirst provide a formal defifinition of completeness and versatility for multi-view representation.
We then theoretically prove the versatility of the learned latent representations.
arXiv Detail & Related papers (2020-11-12T02:29:29Z) - Unsupervised Image Classification for Deep Representation Learning [42.09716669386924]
We propose an unsupervised image classification framework without using embedding clustering.
Experiments on ImageNet dataset have been conducted to prove the effectiveness of our method.
arXiv Detail & Related papers (2020-06-20T02:57:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.