Equivariant Graph Neural Networks for 3D Macromolecular Structure
- URL: http://arxiv.org/abs/2106.03843v1
- Date: Mon, 7 Jun 2021 17:57:04 GMT
- Title: Equivariant Graph Neural Networks for 3D Macromolecular Structure
- Authors: Bowen Jing, Stephan Eismann, Pratham N. Soni, Ron O. Dror
- Abstract summary: We extend work on geometric vector perceptrons and apply equivariant graph neural networks to a wide range of tasks from structural biology.
Our method outperforms all reference architectures on 4 out of 8 tasks in the ATOM3D benchmark and broadly improves over rotation-invariant graph neural networks.
- Score: 2.064612766965483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representing and reasoning about 3D structures of macromolecules is emerging
as a distinct challenge in machine learning. Here, we extend recent work on
geometric vector perceptrons and apply equivariant graph neural networks to a
wide range of tasks from structural biology. Our method outperforms all
reference architectures on 4 out of 8 tasks in the ATOM3D benchmark and broadly
improves over rotation-invariant graph neural networks. We also demonstrate
that transfer learning can improve performance in learning from macromolecular
structure.
Related papers
- Learning Invariant Representations of Graph Neural Networks via Cluster
Generalization [58.68231635082891]
Graph neural networks (GNNs) have become increasingly popular in modeling graph-structured data.
In this paper, we experimentally find that the performance of GNNs drops significantly when the structure shift happens.
We propose the Cluster Information Transfer (CIT) mechanism, which can learn invariant representations for GNNs.
arXiv Detail & Related papers (2024-03-06T10:36:56Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - A new perspective on building efficient and expressive 3D equivariant
graph neural networks [39.0445472718248]
We propose a hierarchy of 3D isomorphism to evaluate the expressive power of equivariant GNNs.
Our work leads to two crucial modules for designing expressive and efficient geometric GNNs.
To demonstrate the applicability of our theory, we propose LEFTNet which effectively implements these modules.
arXiv Detail & Related papers (2023-04-07T18:08:27Z) - Equivariant Graph Attention Networks for Molecular Property Prediction [0.34376560669160383]
Learning about 3D molecular structures with varying size is an emerging challenge in machine learning and especially in drug discovery.
We propose an equivariant Graph Neural Networks (GNN) that operates with Cartesian coordinates to incorporate directionality.
We demonstrate the efficacy of our architecture on predicting quantum mechanical properties of small molecules and its benefit on problems that concern macromolecular structures such as protein complexes.
arXiv Detail & Related papers (2022-02-20T19:07:29Z) - Orientation-Aware Graph Neural Networks for Protein Structure Representation Learning [29.366321002562373]
We propose the Orientation-Aware Graph Neural Networks (OAGNNs) to better sense the geometric characteristics in protein structure.
Extending a single weight from a scalar to a 3D vector, we construct a rich set of geometric-meaningful operations.
OAGNNs have a remarkable ability to sense geometric orientational features compared to classical networks.
arXiv Detail & Related papers (2022-01-28T13:41:56Z) - Graph Kernel Neural Networks [53.91024360329517]
We propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain.
This allows us to define an entirely structural model that does not require computing the embedding of the input graph.
Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability.
arXiv Detail & Related papers (2021-12-14T14:48:08Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs)
In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance.
arXiv Detail & Related papers (2021-02-19T10:25:33Z) - ATOM3D: Tasks On Molecules in Three Dimensions [91.72138447636769]
Deep neural networks have recently gained significant attention.
In this work we present ATOM3D, a collection of both novel and existing datasets spanning several key classes of biomolecules.
We develop three-dimensional molecular learning networks for each of these tasks, finding that they consistently improve performance.
arXiv Detail & Related papers (2020-12-07T20:18:23Z) - Learning from Protein Structure with Geometric Vector Perceptrons [6.5360079597553025]
We introduce geometric vector perceptrons, which extend standard dense layers to operate on collections of Euclidean vectors.
We demonstrate our approach on two important problems in learning from protein structure: model quality assessment and computational protein design.
arXiv Detail & Related papers (2020-09-03T01:54:25Z) - Uncovering the Folding Landscape of RNA Secondary Structure with Deep
Graph Embeddings [71.20283285671461]
We propose a geometric scattering autoencoder (GSAE) network for learning such graph embeddings.
Our embedding network first extracts rich graph features using the recently proposed geometric scattering transform.
We show that GSAE organizes RNA graphs both by structure and energy, accurately reflecting bistable RNA structures.
arXiv Detail & Related papers (2020-06-12T00:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.