Weakly Supervised Volumetric Image Segmentation with Deformed Templates
- URL: http://arxiv.org/abs/2106.03987v1
- Date: Mon, 7 Jun 2021 22:09:34 GMT
- Title: Weakly Supervised Volumetric Image Segmentation with Deformed Templates
- Authors: Udaranga Wickramasinghe and Pascal Fua
- Abstract summary: We propose an approach that is truly weakly-supervised in the sense that we only need to provide a sparse set of 3D point on the surface of target objects.
We will show that it outperforms a more traditional approach to weak-supervision in 3D at a reduced supervision cost.
- Score: 80.04326168716493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are many approaches that use weak-supervision to train networks to
segment 2D images. By contrast, existing 3D approaches rely on full-supervision
of a subset of 2D slices of the 3D image volume. In this paper, we propose an
approach that is truly weakly-supervised in the sense that we only need to
provide a sparse set of 3D point on the surface of target objects, an easy task
that can be quickly done. We use the 3D points to deform a 3D template so that
it roughly matches the target object outlines and we introduce an architecture
that exploits the supervision provided by coarse template to train a network to
find accurate boundaries.
We evaluate the performance of our approach on Computed Tomography (CT),
Magnetic Resonance Imagery (MRI) and Electron Microscopy (EM) image datasets.
We will show that it outperforms a more traditional approach to
weak-supervision in 3D at a reduced supervision cost.
Related papers
- LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
Large Reconstruction Models have made significant strides in the realm of automated 3D content generation from single or multiple input images.
Despite their success, these models often produce 3D meshes with geometric inaccuracies, stemming from the inherent challenges of deducing 3D shapes solely from image data.
We introduce a novel framework, the Large Image and Point Cloud Alignment Model (LAM3D), which utilizes 3D point cloud data to enhance the fidelity of generated 3D meshes.
arXiv Detail & Related papers (2024-05-24T15:09:12Z) - Any2Point: Empowering Any-modality Large Models for Efficient 3D Understanding [83.63231467746598]
We introduce Any2Point, a parameter-efficient method to empower any-modality large models (vision, language, audio) for 3D understanding.
We propose a 3D-to-any (1D or 2D) virtual projection strategy that correlates the input 3D points to the original 1D or 2D positions within the source modality.
arXiv Detail & Related papers (2024-04-11T17:59:45Z) - Weakly Supervised Monocular 3D Detection with a Single-View Image [58.57978772009438]
Monocular 3D detection aims for precise 3D object localization from a single-view image.
We propose SKD-WM3D, a weakly supervised monocular 3D detection framework.
We show that SKD-WM3D surpasses the state-of-the-art clearly and is even on par with many fully supervised methods.
arXiv Detail & Related papers (2024-02-29T13:26:47Z) - PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained
Image-Language Models [56.324516906160234]
Generalizable 3D part segmentation is important but challenging in vision and robotics.
This paper explores an alternative way for low-shot part segmentation of 3D point clouds by leveraging a pretrained image-language model, GLIP.
We transfer the rich knowledge from 2D to 3D through GLIP-based part detection on point cloud rendering and a novel 2D-to-3D label lifting algorithm.
arXiv Detail & Related papers (2022-12-03T06:59:01Z) - Multi-Modality Task Cascade for 3D Object Detection [22.131228757850373]
Many methods train two models in isolation and use simple feature concatenation to represent 3D sensor data.
We propose a novel Multi-Modality Task Cascade network (MTC-RCNN) that leverages 3D box proposals to improve 2D segmentation predictions.
We show that including a 2D network between two stages of 3D modules significantly improves both 2D and 3D task performance.
arXiv Detail & Related papers (2021-07-08T17:55:01Z) - Spatial Context-Aware Self-Attention Model For Multi-Organ Segmentation [18.76436457395804]
Multi-organ segmentation is one of most successful applications of deep learning in medical image analysis.
Deep convolutional neural nets (CNNs) have shown great promise in achieving clinically applicable image segmentation performance on CT or MRI images.
We propose a new framework for combining 3D and 2D models, in which the segmentation is realized through high-resolution 2D convolutions.
arXiv Detail & Related papers (2020-12-16T21:39:53Z) - Improved Modeling of 3D Shapes with Multi-view Depth Maps [48.8309897766904]
We present a general-purpose framework for modeling 3D shapes using CNNs.
Using just a single depth image of the object, we can output a dense multi-view depth map representation of 3D objects.
arXiv Detail & Related papers (2020-09-07T17:58:27Z) - From Image Collections to Point Clouds with Self-supervised Shape and
Pose Networks [53.71440550507745]
Reconstructing 3D models from 2D images is one of the fundamental problems in computer vision.
We propose a deep learning technique for 3D object reconstruction from a single image.
We learn both 3D point cloud reconstruction and pose estimation networks in a self-supervised manner.
arXiv Detail & Related papers (2020-05-05T04:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.