Coarse-to-Fine Curriculum Learning
- URL: http://arxiv.org/abs/2106.04072v1
- Date: Tue, 8 Jun 2021 03:09:38 GMT
- Title: Coarse-to-Fine Curriculum Learning
- Authors: Otilia Stretcu, Emmanouil Antonios Platanios, Tom M. Mitchell,
Barnab\'as P\'oczos
- Abstract summary: We propose a novel curriculum learning approach which decomposes challenging tasks into sequences of easier intermediate goals.
We focus on classification tasks, and design the intermediate tasks using an automatically constructed label hierarchy.
We show significant performance gains especially on classification problems with many labels.
- Score: 26.213618168827026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When faced with learning challenging new tasks, humans often follow sequences
of steps that allow them to incrementally build up the necessary skills for
performing these new tasks. However, in machine learning, models are most often
trained to solve the target tasks directly.Inspired by human learning, we
propose a novel curriculum learning approach which decomposes challenging tasks
into sequences of easier intermediate goals that are used to pre-train a model
before tackling the target task. We focus on classification tasks, and design
the intermediate tasks using an automatically constructed label hierarchy. We
train the model at each level of the hierarchy, from coarse labels to fine
labels, transferring acquired knowledge across these levels. For instance, the
model will first learn to distinguish animals from objects, and then use this
acquired knowledge when learning to classify among more fine-grained classes
such as cat, dog, car, and truck. Most existing curriculum learning algorithms
for supervised learning consist of scheduling the order in which the training
examples are presented to the model. In contrast, our approach focuses on the
output space of the model. We evaluate our method on several established
datasets and show significant performance gains especially on classification
problems with many labels. We also evaluate on a new synthetic dataset which
allows us to study multiple aspects of our method.
Related papers
- Low-Rank Mixture-of-Experts for Continual Medical Image Segmentation [18.984447545932706]
"catastrophic forgetting" problem occurs when model forgets previously learned features when it is extended to new categories or tasks.
We propose a network by introducing the data-specific Mixture of Experts structure to handle the new tasks or categories.
We validate our method on both class-level and task-level continual learning challenges.
arXiv Detail & Related papers (2024-06-19T14:19:50Z) - TIDo: Source-free Task Incremental Learning in Non-stationary
Environments [0.0]
Updating a model-based agent to learn new target tasks requires us to store past training data.
Few-shot task incremental learning methods overcome the limitation of labeled target datasets.
We propose a one-shot task incremental learning approach that can adapt to non-stationary source and target tasks.
arXiv Detail & Related papers (2023-01-28T02:19:45Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - Curriculum Learning: A Survey [65.31516318260759]
Curriculum learning strategies have been successfully employed in all areas of machine learning.
We construct a taxonomy of curriculum learning approaches by hand, considering various classification criteria.
We build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm.
arXiv Detail & Related papers (2021-01-25T20:08:32Z) - COG: Connecting New Skills to Past Experience with Offline Reinforcement
Learning [78.13740204156858]
We show that we can reuse prior data to extend new skills simply through dynamic programming.
We demonstrate the effectiveness of our approach by chaining together several behaviors seen in prior datasets for solving a new task.
We train our policies in an end-to-end fashion, mapping high-dimensional image observations to low-level robot control commands.
arXiv Detail & Related papers (2020-10-27T17:57:29Z) - Few-Shot Image Classification via Contrastive Self-Supervised Learning [5.878021051195956]
We propose a new paradigm of unsupervised few-shot learning to repair the deficiencies.
We solve the few-shot tasks in two phases: meta-training a transferable feature extractor via contrastive self-supervised learning.
Our method achieves state of-the-art performance in a variety of established few-shot tasks on the standard few-shot visual classification datasets.
arXiv Detail & Related papers (2020-08-23T02:24:31Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Expert Training: Task Hardness Aware Meta-Learning for Few-Shot
Classification [62.10696018098057]
We propose an easy-to-hard expert meta-training strategy to arrange the training tasks properly.
A task hardness aware module is designed and integrated into the training procedure to estimate the hardness of a task.
Experimental results on the miniImageNet and tieredImageNetSketch datasets show that the meta-learners can obtain better results with our expert training strategy.
arXiv Detail & Related papers (2020-07-13T08:49:00Z) - A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks [1.1802674324027231]
Self-supervised pre-training for transfer learning is becoming an increasingly popular technique to improve state-of-the-art results using unlabeled data.
We provide an overview of the taxonomy for self-supervised learning and transfer learning, and highlight some prominent methods for designing pre-training tasks across different domains.
arXiv Detail & Related papers (2020-07-01T22:55:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.