A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks
- URL: http://arxiv.org/abs/2007.00800v1
- Date: Wed, 1 Jul 2020 22:55:48 GMT
- Title: A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks
- Authors: Huanru Henry Mao
- Abstract summary: Self-supervised pre-training for transfer learning is becoming an increasingly popular technique to improve state-of-the-art results using unlabeled data.
We provide an overview of the taxonomy for self-supervised learning and transfer learning, and highlight some prominent methods for designing pre-training tasks across different domains.
- Score: 1.1802674324027231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are typically trained under a supervised learning
framework where a model learns a single task using labeled data. Instead of
relying solely on labeled data, practitioners can harness unlabeled or related
data to improve model performance, which is often more accessible and
ubiquitous. Self-supervised pre-training for transfer learning is becoming an
increasingly popular technique to improve state-of-the-art results using
unlabeled data. It involves first pre-training a model on a large amount of
unlabeled data, then adapting the model to target tasks of interest. In this
review, we survey self-supervised learning methods and their applications
within the sequential transfer learning framework. We provide an overview of
the taxonomy for self-supervised learning and transfer learning, and highlight
some prominent methods for designing pre-training tasks across different
domains. Finally, we discuss recent trends and suggest areas for future
investigation.
Related papers
- Premonition: Using Generative Models to Preempt Future Data Changes in
Continual Learning [63.850451635362425]
Continual learning requires a model to adapt to ongoing changes in the data distribution.
We show that the combination of a large language model and an image generation model can similarly provide useful premonitions.
We find that the backbone of our pre-trained networks can learn representations useful for the downstream continual learning problem.
arXiv Detail & Related papers (2024-03-12T06:29:54Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Transfer Learning between Motor Imagery Datasets using Deep Learning --
Validation of Framework and Comparison of Datasets [0.0]
We present a simple deep learning-based framework commonly used in computer vision.
We demonstrate its effectiveness for cross-dataset transfer learning in mental imagery decoding tasks.
arXiv Detail & Related papers (2023-09-04T20:58:57Z) - Self-Distillation for Further Pre-training of Transformers [83.84227016847096]
We propose self-distillation as a regularization for a further pre-training stage.
We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks.
arXiv Detail & Related papers (2022-09-30T02:25:12Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) aims to determine the sentiment polarity towards an aspect.
There always exists severe domain shift between the pretraining and downstream ABSA datasets.
We introduce a unified alignment pretraining framework into the vanilla pretrain-finetune pipeline.
arXiv Detail & Related papers (2021-10-26T04:03:45Z) - Coarse-to-Fine Curriculum Learning [26.213618168827026]
We propose a novel curriculum learning approach which decomposes challenging tasks into sequences of easier intermediate goals.
We focus on classification tasks, and design the intermediate tasks using an automatically constructed label hierarchy.
We show significant performance gains especially on classification problems with many labels.
arXiv Detail & Related papers (2021-06-08T03:09:38Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Minimax Lower Bounds for Transfer Learning with Linear and One-hidden
Layer Neural Networks [27.44348371795822]
We develop a statistical minimax framework to characterize the limits of transfer learning.
We derive a lower-bound for the target generalization error achievable by any algorithm as a function of the number of labeled source and target data.
arXiv Detail & Related papers (2020-06-16T22:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.