論文の概要: Supervised Machine Learning with Plausible Deniability
- arxiv url: http://arxiv.org/abs/2106.04267v1
- Date: Tue, 8 Jun 2021 11:54:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 02:17:39.456619
- Title: Supervised Machine Learning with Plausible Deniability
- Title(参考訳): プラルーシブル・デニラビリティによる機械学習の監督
- Authors: Stefan Rass, Sandra K\"onig, Jasmin Wachter, Manuel Egger, Manuel
Hobisch
- Abstract要約: 機械学習(ML)モデルが、特定のデータセットでトレーニングされたモデルが、トレーニングデータに対してどの程度のプライバシを提供するか、という問題について検討する。
我々は、純粋にランダムなトレーニングデータの集合を取ることができ、そこから、ちょうど$f$のMLモデルを生成する'適切な学習ルール'を定義することができることを示す。
- 参考スコア(独自算出の注目度): 1.685485565763117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the question of how well machine learning (ML) models trained on a
certain data set provide privacy for the training data, or equivalently,
whether it is possible to reverse-engineer the training data from a given ML
model. While this is easy to answer negatively in the most general case, it is
interesting to note that the protection extends over non-recoverability towards
plausible deniability: Given an ML model $f$, we show that one can take a set
of purely random training data, and from this define a suitable ``learning
rule'' that will produce a ML model that is exactly $f$. Thus, any speculation
about which data has been used to train $f$ is deniable upon the claim that any
other data could have led to the same results. We corroborate our theoretical
finding with practical examples, and open source implementations of how to find
the learning rules for a chosen set of raining data.
- Abstract(参考訳): 機械学習(ML)モデルがトレーニングデータに対してどの程度のプライバシを提供するか,あるいは同等に,与えられたMLモデルからトレーニングデータをリバースエンジニアリングすることが可能か,という問題について検討する。
MLモデルが$f$を与えられると、純粋にランダムなトレーニングデータのセットを取ることができ、そこから、ちょうど$f$のMLモデルを生成するのに適した'`ラーニングルール'を定義します。
したがって、$f$のトレーニングにどのデータが使われたかについての推測は、他のデータが同じ結果に繋がる可能性があるという主張に従わない。
我々は,実例による理論的発見と,選択した降雨データに対する学習ルールの発見方法のオープンソース実装の相関付けを行う。
関連論文リスト
- Training on the Benchmark Is Not All You Need [52.01920740114261]
本稿では,複数選択肢の内容に基づいた簡易かつ効果的なデータ漏洩検出手法を提案する。
本手法は,モデルトレーニングデータや重みを使用せずに,ブラックボックス条件下で動作することができる。
我々は,4つのベンチマークデータセットを用いて,31個の主要なオープンソースLCMのデータ漏洩の程度を評価する。
論文 参考訳(メタデータ) (2024-09-03T11:09:44Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - Verifiable and Provably Secure Machine Unlearning [37.353982787321385]
機械学習は、トレーニング後の機械学習モデルのトレーニングデータセットからポイントを取り除くことを目的としている。
本稿では,機械のアンラーニングシステムの保証を捉えるための,検証可能なアンラーニングの最初の暗号的定義を示す。
我々は、線形回帰、ロジスティック回帰、ニューラルネットワークの実現可能性を検証するために、3つの異なるアンラーニング手法のプロトコルを実装した。
論文 参考訳(メタデータ) (2022-10-17T14:19:52Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
本稿では,モデルクラスの振る舞いを学習データの観点から分析するための概念的枠組みであるデータモデリングについて述べる。
単純な線形データモデルであっても、モデル出力をうまく予測できることが示される。
論文 参考訳(メタデータ) (2022-02-01T18:15:24Z) - Zero-Shot Machine Unlearning [6.884272840652062]
現代のプライバシー規制は、市民に製品、サービス、企業によって忘れられる権利を与える。
トレーニングプロセスやトレーニングサンプルに関連するデータは、未学習の目的のためにアクセスできない。
本稿では, (a) 誤り最小化雑音と (b) ゲート付き知識伝達に基づくゼロショットマシンアンラーニングのための2つの新しい解を提案する。
論文 参考訳(メタデータ) (2022-01-14T19:16:09Z) - An Information-Theoretic Approach to Personalized Explainable Machine
Learning [92.53970625312665]
本稿では,予測とユーザ知識のための簡易確率モデルを提案する。
説明と予測の間の条件付き相互情報による説明の効果を定量化する。
論文 参考訳(メタデータ) (2020-03-01T13:06:29Z) - Approximate Data Deletion from Machine Learning Models [31.689174311625084]
トレーニングされた機械学習(ML)モデルからデータを削除することは、多くのアプリケーションにおいて重要なタスクである。
線形モデルとロジスティックモデルに対する近似的削除法を提案する。
また,MLモデルからのデータ削除の完全性を評価するための機能注入テストも開発した。
論文 参考訳(メタデータ) (2020-02-24T05:12:03Z) - Certified Data Removal from Machine Learning Models [79.91502073022602]
優れたデータスチュワードシップでは、データ所有者の要求でデータを削除する必要がある。
これにより、トレーニングデータに関する情報を暗黙的に格納するトレーニングされた機械学習モデルが、このような削除要求の影響を受けるべきかどうか、という疑問が提起される。
データを削除したモデルと、最初にデータを観測しなかったモデルとを区別できないという非常に強力な理論的保証である。
論文 参考訳(メタデータ) (2019-11-08T03:57:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。