論文の概要: Surveillance of COVID-19 Pandemic using Social Media: A Reddit Study in
North Carolina
- arxiv url: http://arxiv.org/abs/2106.04515v2
- Date: Wed, 9 Jun 2021 01:04:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 10:46:40.432171
- Title: Surveillance of COVID-19 Pandemic using Social Media: A Reddit Study in
North Carolina
- Title(参考訳): ソーシャルメディアを利用したCOVID-19パンデミックのサーベイランス:ノースカロライナ州におけるReddit調査
- Authors: Christopher Whitfield, Yang Liu, Mohad Anwar
- Abstract要約: 我々はソーシャルメディアに侵入し、緩和と検出戦略の取り込みを回避し、パンデミックに関する問題や懸念を捉えます。
ノースカロライナの4大サブレディットコミュニティから6ヶ月にわたって新型コロナウイルス関連の投稿を抽出した後、ノイズの多いデータをきれいにするためにNLPベースの前処理を行いました。
我々は,「マスク」,「フル」,「テスト」が「個人保護装置」,「症状」,「検査」のカテゴリーで最も多い名前であることを示した。
- 参考スコア(独自算出の注目度): 5.084731309706487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronavirus disease (COVID-19) pandemic has changed various aspects of
people's lives and behaviors. At this stage, there are no other ways to control
the natural progression of the disease than adopting mitigation strategies such
as wearing masks, watching distance, and washing hands. Moreover, at this time
of social distancing, social media plays a key role in connecting people and
providing a platform for expressing their feelings. In this study, we tap into
social media to surveil the uptake of mitigation and detection strategies, and
capture issues and concerns about the pandemic. In particular, we explore the
research question, "how much can be learned regarding the public uptake of
mitigation strategies and concerns about COVID-19 pandemic by using natural
language processing on Reddit posts?" After extracting COVID-related posts from
the four largest subreddit communities of North Carolina over six months, we
performed NLP-based preprocessing to clean the noisy data. We employed a custom
Named-entity Recognition (NER) system and a Latent Dirichlet Allocation (LDA)
method for topic modeling on a Reddit corpus. We observed that 'mask', 'flu',
and 'testing' are the most prevalent named-entities for "Personal Protective
Equipment", "symptoms", and "testing" categories, respectively. We also
observed that the most discussed topics are related to testing, masks, and
employment. The mitigation measures are the most prevalent theme of discussion
across all subreddits.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)パンデミックは人々の生活や行動の様々な側面を変えてきた。
この段階では、マスクを着用したり、距離を観察したり、手を洗ったりといった緩和策を採用する以外に、病気の自然進行を制御する方法はない。
さらに、ソーシャルディスタンシングにおいて、ソーシャルメディアは人々をつなげ、感情を表現するためのプラットフォームを提供する上で重要な役割を果たす。
本研究では,ソーシャルメディアを活用し,緩和策と検出戦略の取組を調査し,パンデミックに関する問題や懸念を捉えた。
特に、研究課題として、「Redditの投稿で自然言語処理を使用することで、新型コロナウイルスのパンデミックに対する公衆の取り組みや懸念について、どの程度のことが学べるか?
ノースカロライナの4大サブレディットコミュニティから6ヶ月にわたって新型コロナウイルス関連の投稿を抽出した後、ノイズの多いデータをきれいにするためにNLPベースの前処理を行いました。
redditコーパス上でトピックモデリングを行うために,独自の名前付きエンティティ認識 (ner) システムと潜在ディリクレ割り当て (lda) 方式を採用した。
我々は,「マスク」,「フル」,「テスト」が,「個人保護装置」,「症状」,「テスト」の各カテゴリーにおいて,最も多い名義であることを示した。
また、最も議論されたトピックは、テスト、マスク、雇用に関連することも確認した。
緩和策は、すべてのサブredditで最も一般的な議論テーマである。
関連論文リスト
- Event Detection from Social Media for Epidemic Prediction [76.90779562626541]
ソーシャルメディア投稿から疫病関連事象を抽出・分析する枠組みを構築した。
実験では、新型コロナウイルスベースのSPEEDで訓練されたEDモデルが、3つの目に見えない流行の流行を効果的に検出する方法が明らかにされている。
モンキーポックスのWHO流行宣言より4~9週間早く,抽出した事象の報告が急激な増加を示すことを示す。
論文 参考訳(メタデータ) (2024-04-02T06:31:17Z) - Human Behavior in the Time of COVID-19: Learning from Big Data [71.26355067309193]
2020年3月以降、新型コロナウイルスの感染者は6億人を超え、600万人以上が死亡している。
パンデミックはあらゆる面で人間の行動に影響を与え、変化をもたらした。
研究者は自然言語処理、コンピュータビジョン、音声信号処理、頻繁なパターンマイニング、機械学習といったビッグデータ技術を採用してきた。
論文 参考訳(メタデータ) (2023-03-23T17:19:26Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - A Survey on Masked Facial Detection Methods and Datasets for Fighting
Against COVID-19 [64.88701052813462]
新型コロナウイルス感染症2019(COVID-19)は、感染拡大以来、世界にとって大きな課題となっている。
この病気と闘うために、一連の人工知能(AI)技術が開発され、現実世界のシナリオに適用される。
本稿では主に、マスク付き顔検出と関連するデータセットのAI技術に焦点を当てる。
論文 参考訳(メタデータ) (2022-01-13T03:28:20Z) - Know it to Defeat it: Exploring Health Rumor Characteristics and
Debunking Efforts on Chinese Social Media during COVID-19 Crisis [65.74516068984232]
われわれは、中国のマイクロブログサイトWeiboで、新型コロナウイルス(COVID-19)に関する4ヶ月にわたる噂に関するオンラインディスカッションを包括的に分析した。
以上の結果から、不安(恐怖)型健康噂は、希望(希望)型よりもはるかに多くの議論を巻き起こし、長く続いたことが示唆された。
本稿では,噂の議論を抑えるためのデバンキングの有効性を示す。
論文 参考訳(メタデータ) (2021-09-25T14:02:29Z) - Textual Analysis of Communications in COVID-19 Infected Community on
Social Media [8.243563562508466]
新型コロナウイルスのパンデミックの間、人々はソーシャルメディアでパンデミック関連のトピックについて議論し始めました。
本研究では,言語学的観点から,サブレディットに関する議論の性質について理解しようと試みる。
3つの異なるカテゴリーの話題にまたがる言語特性の違いを見出した。
論文 参考訳(メタデータ) (2021-05-03T22:09:35Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
ソーシャルメディアプラットフォームは、新型コロナウイルス(COVID-19)に関する世界的な会話の手段として機能している。
本稿では,パンデミックを取り巻くソーシャルメディア会話の重要コンテンツと特徴の分析,マイニング,追跡のための枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-22T00:45:50Z) - Face Off: Polarized Public Opinions on Personal Face Mask Usage during
the COVID-19 Pandemic [77.34726150561087]
様々な政府機関による一連の政策変更は、フェイスマスクの偏光に寄与したと推測されている。
新型コロナウイルスの感染拡大に伴う米国でのマスクに対する国民の感情を正確に評価するための新しいアプローチを提案する。
2つの重要な政策シフトの出来事が、共和党と民主党の両方の感情の統計的に重要な変化に寄与している。
論文 参考訳(メタデータ) (2020-10-31T18:52:41Z) - COVID-19 Pandemic: Identifying Key Issues using Social Media and Natural
Language Processing [14.54689130381201]
ソーシャルメディアデータは、パンデミックに対する大衆の認識と経験を明らかにすることができる。
われわれは6つのソーシャルメディアプラットフォームから集めた新型コロナウイルス関連コメントを分析した。
我々は、34の負のテーマを特定し、そのうち17は経済的、社会政治的、教育的、政治的問題である。
論文 参考訳(メタデータ) (2020-08-23T12:05:12Z) - Health, Psychosocial, and Social issues emanating from COVID-19 pandemic
based on Social Media Comments using Natural Language Processing [8.150081210763567]
新型コロナウイルス(COVID-19)のパンデミックは、世界の健康危機を引き起こし、多くの人の生活に影響を与えている。
ソーシャルメディアのデータは、政府や保健機関がパンデミックにどう対処しているかに対する大衆の認識を明らかにすることができる。
本稿は、新型コロナウイルスのパンデミックが世界規模でソーシャルメディアデータを利用した人々に与える影響を調査することを目的とする。
論文 参考訳(メタデータ) (2020-07-23T17:19:50Z) - Twitter discussions and emotions about COVID-19 pandemic: a machine
learning approach [0.0]
我々は、2020年3月1日から4月21日にかけての「コロナウイルス」「新型コロナウイルス」「隔離」など25のハッシュタグのリストを用いて、新型コロナウイルスのパンデミックに関連する400万のTwitterメッセージを分析した。
我々は、13の議論トピックを特定し、それらを「新型コロナウイルスの拡散を遅らせるための公衆衛生措置」、「新型コロナウイルスに関連する社会的汚職」、「米国でのコロナウイルスのニュースと死」、「世界の他の場所でのコロナウイルスのケース」など、5つの異なるテーマに分類する。
論文 参考訳(メタデータ) (2020-05-26T16:10:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。