Scaling Vision Transformers
- URL: http://arxiv.org/abs/2106.04560v1
- Date: Tue, 8 Jun 2021 17:47:39 GMT
- Title: Scaling Vision Transformers
- Authors: Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, Lucas Beyer
- Abstract summary: We study how Vision Transformers scale and characterize the relationships between error rate, data, and compute.
We train a ViT model with two billion parameters, which attains a new state-of-the-art on ImageNet of 90.45% top-1 accuracy.
The model also performs well on few-shot learning, for example, attaining 84.86% top-1 accuracy on ImageNet with only 10 examples per class.
- Score: 82.08465256393514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attention-based neural networks such as the Vision Transformer (ViT) have
recently attained state-of-the-art results on many computer vision benchmarks.
Scale is a primary ingredient in attaining excellent results, therefore,
understanding a model's scaling properties is a key to designing future
generations effectively. While the laws for scaling Transformer language models
have been studied, it is unknown how Vision Transformers scale. To address
this, we scale ViT models and data, both up and down, and characterize the
relationships between error rate, data, and compute. Along the way, we refine
the architecture and training of ViT, reducing memory consumption and
increasing accuracy the resulting models. As a result, we successfully train a
ViT model with two billion parameters, which attains a new state-of-the-art on
ImageNet of 90.45% top-1 accuracy. The model also performs well on few-shot
learning, for example, attaining 84.86% top-1 accuracy on ImageNet with only 10
examples per class.
Related papers
- ViTamin: Designing Scalable Vision Models in the Vision-Language Era [26.878662961209997]
Vision Transformers (ViTs) remain the default choice for the image encoder.
ViTamin-L significantly outperforms ViT-L by 2.0% ImageNet zero-shot accuracy.
ViTamin-XL with only 436M parameters attains 82.9% ImageNet zero-shot accuracy.
arXiv Detail & Related papers (2024-04-02T17:40:29Z) - How to Train Vision Transformer on Small-scale Datasets? [4.56717163175988]
In contrast to convolutional neural networks, Vision Transformer lacks inherent inductive biases.
We show that self-supervised inductive biases can be learned directly from small-scale datasets.
This allows to train these models without large-scale pre-training, changes to model architecture or loss functions.
arXiv Detail & Related papers (2022-10-13T17:59:19Z) - Advancing Plain Vision Transformer Towards Remote Sensing Foundation
Model [97.9548609175831]
We resort to plain vision transformers with about 100 million parameters and make the first attempt to propose large vision models customized for remote sensing tasks.
Specifically, to handle the large image size and objects of various orientations in RS images, we propose a new rotated varied-size window attention.
Experiments on detection tasks demonstrate the superiority of our model over all state-of-the-art models, achieving 81.16% mAP on the DOTA-V1.0 dataset.
arXiv Detail & Related papers (2022-08-08T09:08:40Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
We propose a Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
We obtain the state-of-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 accuracy on ImageNet real validation set.
arXiv Detail & Related papers (2022-02-21T10:40:05Z) - How to train your ViT? Data, Augmentation, and Regularization in Vision
Transformers [74.06040005144382]
Vision Transformers (ViT) have been shown to attain highly competitive performance for a wide range of vision applications.
We conduct a systematic empirical study in order to better understand the interplay between the amount of training data, AugReg, model size and compute budget.
We train ViT models of various sizes on the public ImageNet-21k dataset which either match or outperform their counterparts trained on the larger, but not publicly available JFT-300M dataset.
arXiv Detail & Related papers (2021-06-18T17:58:20Z) - Self-Supervised Learning with Swin Transformers [24.956637957269926]
We present a self-supervised learning approach called MoBY, with Vision Transformers as its backbone architecture.
The approach basically has no new inventions, which is combined from MoCo v2 and BYOL.
The performance is slightly better than recent works of MoCo v3 and DINO which adopt DeiT as the backbone, but with much lighter tricks.
arXiv Detail & Related papers (2021-05-10T17:59:45Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
We propose a new architecture named Visformer, which is abbreviated from the Vision-friendly Transformer'
With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy.
arXiv Detail & Related papers (2021-04-26T13:13:03Z) - Token Labeling: Training a 85.4% Top-1 Accuracy Vision Transformer with
56M Parameters on ImageNet [86.95679590801494]
We explore the potential of vision transformers in ImageNet classification by developing a bag of training techniques.
We show that by slightly tuning the structure of vision transformers and introducing token labeling, our models are able to achieve better results than the CNN counterparts.
arXiv Detail & Related papers (2021-04-22T04:43:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.