ViTamin: Designing Scalable Vision Models in the Vision-Language Era
- URL: http://arxiv.org/abs/2404.02132v2
- Date: Wed, 3 Apr 2024 19:45:02 GMT
- Title: ViTamin: Designing Scalable Vision Models in the Vision-Language Era
- Authors: Jieneng Chen, Qihang Yu, Xiaohui Shen, Alan Yuille, Liang-Chieh Chen,
- Abstract summary: Vision Transformers (ViTs) remain the default choice for the image encoder.
ViTamin-L significantly outperforms ViT-L by 2.0% ImageNet zero-shot accuracy.
ViTamin-XL with only 436M parameters attains 82.9% ImageNet zero-shot accuracy.
- Score: 26.878662961209997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent breakthroughs in vision-language models (VLMs) start a new page in the vision community. The VLMs provide stronger and more generalizable feature embeddings compared to those from ImageNet-pretrained models, thanks to the training on the large-scale Internet image-text pairs. However, despite the amazing achievement from the VLMs, vanilla Vision Transformers (ViTs) remain the default choice for the image encoder. Although pure transformer proves its effectiveness in the text encoding area, it remains questionable whether it is also the case for image encoding, especially considering that various types of networks are proposed on the ImageNet benchmark, which, unfortunately, are rarely studied in VLMs. Due to small data/model scale, the original conclusions of model design on ImageNet can be limited and biased. In this paper, we aim at building an evaluation protocol of vision models in the vision-language era under the contrastive language-image pretraining (CLIP) framework. We provide a comprehensive way to benchmark different vision models, covering their zero-shot performance and scalability in both model and training data sizes. To this end, we introduce ViTamin, a new vision models tailored for VLMs. ViTamin-L significantly outperforms ViT-L by 2.0% ImageNet zero-shot accuracy, when using the same publicly available DataComp-1B dataset and the same OpenCLIP training scheme. ViTamin-L presents promising results on 60 diverse benchmarks, including classification, retrieval, open-vocabulary detection and segmentation, and large multi-modal models. When further scaling up the model size, our ViTamin-XL with only 436M parameters attains 82.9% ImageNet zero-shot accuracy, surpassing 82.0% achieved by EVA-E that has ten times more parameters (4.4B).
Related papers
- How Well Can Vision Language Models See Image Details? [53.036922527685064]
We introduce a pixel value prediction task to explore "How Well Can Vision Language Models See Image Details?"
Our research reveals that incorporating pixel value prediction as one of the VLM pre-training tasks and vision encoder adaptation markedly boosts VLM performance on downstream image-language understanding tasks.
arXiv Detail & Related papers (2024-08-07T17:59:40Z) - Vision Mamba: Efficient Visual Representation Learning with
Bidirectional State Space Model [51.10876815815515]
We propose a new generic vision backbone with bidirectional Mamba blocks (Vim)
Vim marks the image sequences with position embeddings and compresses the visual representation with bidirectional state space models.
The results demonstrate that Vim is capable of overcoming the computation & memory constraints on performing Transformer-style understanding for high-resolution images.
arXiv Detail & Related papers (2024-01-17T18:56:18Z) - Getting ViT in Shape: Scaling Laws for Compute-Optimal Model Design [84.34416126115732]
Scaling laws have been recently employed to derive compute-optimal model size (number of parameters) for a given compute duration.
We advance and refine such methods to infer compute-optimal model shapes, such as width and depth, and successfully implement this in vision transformers.
Our shape-optimized vision transformer, SoViT, achieves results competitive with models that exceed twice its size, despite being pre-trained with an equivalent amount of compute.
arXiv Detail & Related papers (2023-05-22T13:39:28Z) - MULLER: Multilayer Laplacian Resizer for Vision [16.67232499096539]
We present an extremely lightweight multilayer Laplacian resizer with only a handful of trainable parameters, dubbed MULLER resizer.
We show that MULLER can be easily plugged into various training pipelines, and it effectively boosts the performance of the underlying vision task with little to no extra cost.
arXiv Detail & Related papers (2023-04-06T04:39:21Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
We propose a Vision Transformer Advanced by Exploring intrinsic IB from convolutions, i.e., ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
We obtain the state-of-the-art classification performance, i.e., 88.5% Top-1 classification accuracy on ImageNet validation set and the best 91.2% Top-1 accuracy on ImageNet real validation set.
arXiv Detail & Related papers (2022-02-21T10:40:05Z) - Vector-quantized Image Modeling with Improved VQGAN [93.8443646643864]
We propose a Vector-quantized Image Modeling approach that involves pretraining a Transformer to predict image tokens autoregressively.
We first propose multiple improvements over vanilla VQGAN from architecture to codebook learning, yielding better efficiency and reconstruction fidelity.
When trained on ImageNet at 256x256 resolution, we achieve Inception Score (IS) of 175.1 and Frechet Inception Distance (FID) of 4.17, a dramatic improvement over the vanilla VQGAN.
arXiv Detail & Related papers (2021-10-09T18:36:00Z) - Scaling Vision Transformers [82.08465256393514]
We study how Vision Transformers scale and characterize the relationships between error rate, data, and compute.
We train a ViT model with two billion parameters, which attains a new state-of-the-art on ImageNet of 90.45% top-1 accuracy.
The model also performs well on few-shot learning, for example, attaining 84.86% top-1 accuracy on ImageNet with only 10 examples per class.
arXiv Detail & Related papers (2021-06-08T17:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.