PEARL: Data Synthesis via Private Embeddings and Adversarial
Reconstruction Learning
- URL: http://arxiv.org/abs/2106.04590v1
- Date: Tue, 8 Jun 2021 18:00:01 GMT
- Title: PEARL: Data Synthesis via Private Embeddings and Adversarial
Reconstruction Learning
- Authors: Seng Pei Liew, Tsubasa Takahashi, Michihiko Ueno
- Abstract summary: We propose a new framework of data using deep generative models in a differentially private manner.
Within our framework, sensitive data are sanitized with rigorous privacy guarantees in a one-shot fashion.
Our proposal has theoretical guarantees of performance, and empirical evaluations on multiple datasets show that our approach outperforms other methods at reasonable levels of privacy.
- Score: 1.8692254863855962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new framework of synthesizing data using deep generative models
in a differentially private manner. Within our framework, sensitive data are
sanitized with rigorous privacy guarantees in a one-shot fashion, such that
training deep generative models is possible without re-using the original data.
Hence, no extra privacy costs or model constraints are incurred, in contrast to
popular approaches such as Differentially Private Stochastic Gradient Descent
(DP-SGD), which, among other issues, causes degradation in privacy guarantees
as the training iteration increases. We demonstrate a realization of our
framework by making use of the characteristic function and an adversarial
re-weighting objective, which are of independent interest as well. Our proposal
has theoretical guarantees of performance, and empirical evaluations on
multiple datasets show that our approach outperforms other methods at
reasonable levels of privacy.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Differentially Private Fine-Tuning of Diffusion Models [22.454127503937883]
The integration of Differential Privacy with diffusion models (DMs) presents a promising yet challenging frontier.
Recent developments in this field have highlighted the potential for generating high-quality synthetic data by pre-training on public data.
We propose a strategy optimized for private diffusion models, which minimizes the number of trainable parameters to enhance the privacy-utility trade-off.
arXiv Detail & Related papers (2024-06-03T14:18:04Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - Differentially-Private Data Synthetisation for Efficient Re-Identification Risk Control [3.8811062755861956]
$epsilon$-PrivateSMOTE is a technique for safeguarding against re-identification and linkage attacks.
Our proposal combines synthetic data generation via noise-induced adversarial with differential privacy principles to obfuscate high-risk cases.
arXiv Detail & Related papers (2022-12-01T13:20:37Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - On the utility and protection of optimization with differential privacy
and classic regularization techniques [9.413131350284083]
We study the effectiveness of the differentially-private descent (DP-SGD) algorithm against standard optimization practices with regularization techniques.
We discuss differential privacy's flaws and limits and empirically demonstrate the often superior privacy-preserving properties of dropout and l2-regularization.
arXiv Detail & Related papers (2022-09-07T14:10:21Z) - Differentially Private Synthetic Medical Data Generation using
Convolutional GANs [7.2372051099165065]
We develop a differentially private framework for synthetic data generation using R'enyi differential privacy.
Our approach builds on convolutional autoencoders and convolutional generative adversarial networks to preserve some of the critical characteristics of the generated synthetic data.
We demonstrate that our model outperforms existing state-of-the-art models under the same privacy budget.
arXiv Detail & Related papers (2020-12-22T01:03:49Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.