Automatically Differentiable Random Coefficient Logistic Demand
Estimation
- URL: http://arxiv.org/abs/2106.04636v1
- Date: Tue, 8 Jun 2021 18:50:11 GMT
- Title: Automatically Differentiable Random Coefficient Logistic Demand
Estimation
- Authors: Andrew Chia
- Abstract summary: We show how the random coefficient logistic demand (BLP) model can be phrased as an automatically differentiable moment function.
This allows gradient-based frequentist and quasi-Bayesian estimation using the Continuously Updating Estimator (CUE)
Preliminary findings indicate that the CUE estimated using LTE and frequentist optimization has a lower bias but higher MAE compared to the traditional 2-Stage GMM (2S-GMM) approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show how the random coefficient logistic demand (BLP) model can be phrased
as an automatically differentiable moment function, including the incorporation
of numerical safeguards proposed in the literature. This allows gradient-based
frequentist and quasi-Bayesian estimation using the Continuously Updating
Estimator (CUE). Drawing from the machine learning literature, we outline
hitherto under-utilized best practices in both frequentist and Bayesian
estimation techniques. Our Monte Carlo experiments compare the performance of
CUE, 2S-GMM, and LTE estimation. Preliminary findings indicate that the CUE
estimated using LTE and frequentist optimization has a lower bias but higher
MAE compared to the traditional 2-Stage GMM (2S-GMM) approach. We also find
that using credible intervals from MCMC sampling for the non-linear parameters
together with frequentist analytical standard errors for the concentrated out
linear parameters provides empirical coverage closest to the nominal level. The
accompanying admest Python package provides a platform for replication and
extensibility.
Related papers
- Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Bayesian Cramér-Rao Bound Estimation with Score-Based Models [3.4480437706804503]
The Bayesian Cram'er-Rao bound (CRB) provides a lower bound on the mean square error of any Bayesian estimator under mild regularity conditions.
This work introduces a new data-driven estimator for the CRB using score matching.
arXiv Detail & Related papers (2023-09-28T00:22:21Z) - Overlapping Batch Confidence Intervals on Statistical Functionals
Constructed from Time Series: Application to Quantiles, Optimization, and
Estimation [5.068678962285631]
We propose a confidence interval procedure for statistical functionals constructed using data from a stationary time series.
The OBx limits, certain functionals of the Wiener process parameterized by the size of the batches and the extent of their overlap, form the essential machinery for characterizing dependence.
arXiv Detail & Related papers (2023-07-17T16:21:48Z) - Approximate Gibbs Sampler for Efficient Inference of Hierarchical Bayesian Models for Grouped Count Data [0.0]
This research develops an approximate Gibbs sampler (AGS) to efficiently learn the HBPRMs while maintaining the inference accuracy.
Numerical experiments using real and synthetic datasets with small and large counts demonstrate the superior performance of AGS.
arXiv Detail & Related papers (2022-11-28T21:00:55Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
We develop a novel approach to producing more sample-efficient estimators of expectations in the PL model.
We illustrate our findings both theoretically and empirically using real-world recommendation data from Amazon Music and the Yahoo learning-to-rank challenge.
arXiv Detail & Related papers (2022-05-12T11:15:47Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z) - Efficient Debiased Evidence Estimation by Multilevel Monte Carlo
Sampling [0.0]
We propose a new optimization algorithm for Bayesian inference based multilevel Monte Carlo (MLMC) methods.
Our numerical results confirm considerable computational savings compared to the conventional estimators.
arXiv Detail & Related papers (2020-01-14T09:14:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.