Semiparametric Bayesian Difference-in-Differences
- URL: http://arxiv.org/abs/2412.04605v2
- Date: Wed, 18 Dec 2024 13:49:59 GMT
- Title: Semiparametric Bayesian Difference-in-Differences
- Authors: Christoph Breunig, Ruixuan Liu, Zhengfei Yu,
- Abstract summary: We study semiparametric Bayesian inference for the average treatment effect on the treatedATT within the difference-in-differences research design.<n>We propose two new Bayesian methods with frequentist validity.
- Score: 2.458652618559425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies semiparametric Bayesian inference for the average treatment effect on the treated (ATT) within the difference-in-differences research design. We propose two new Bayesian methods with frequentist validity. The first one places a standard Gaussian process prior on the conditional mean function of the control group. We obtain asymptotic equivalence of our Bayesian estimator and an efficient frequentist estimator by establishing a semiparametric Bernstein-von Mises (BvM) theorem. The second method is a double robust Bayesian procedure that adjusts the prior distribution of the conditional mean function and subsequently corrects the posterior distribution of the resulting ATT. We establish a semiparametric BvM result under double robust smoothness conditions; i.e., the lack of smoothness of conditional mean functions can be compensated by high regularity of the propensity score, and vice versa. Monte Carlo simulations and an empirical application demonstrate that the proposed Bayesian DiD methods exhibit strong finite-sample performance compared to existing frequentist methods. Finally, we outline an extension to difference-in-differences with multiple periods and staggered entry.
Related papers
- Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
We provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models.
We propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality.
arXiv Detail & Related papers (2025-03-04T17:46:51Z) - Minimax Optimal Kernel Two-Sample Tests with Random Features [8.030917052755195]
We propose a spectral regularized two-sample test based on random Fourier feature (RFF) approximation.
We show the proposed test to be minimax optimal if the approximation order of RFF is sufficiently large.
We develop a practically implementable permutation-based version of the proposed test with a data-adaptive strategy for selecting the regularization parameter and the kernel.
arXiv Detail & Related papers (2025-02-28T06:12:00Z) - In-Context Parametric Inference: Point or Distribution Estimators? [66.22308335324239]
We show that amortized point estimators generally outperform posterior inference, though the latter remain competitive in some low-dimensional problems.
Our experiments indicate that amortized point estimators generally outperform posterior inference, though the latter remain competitive in some low-dimensional problems.
arXiv Detail & Related papers (2025-02-17T10:00:24Z) - Maximum a Posteriori Inference for Factor Graphs via Benders' Decomposition [0.38233569758620056]
We present a method for maximum a-posteriori inference in general Bayesian factor models.
We derive MAP estimation algorithms for the Bayesian Gaussian mixture model and latent Dirichlet allocation.
arXiv Detail & Related papers (2024-10-24T19:57:56Z) - Simultaneous Inference for Local Structural Parameters with Random Forests [19.014535120129338]
We construct simultaneous confidence intervals for solutions to conditional moment equations.
We obtain several new order-explicit results on the concentration and normal approximation of high-dimensional U.S.
As a by-product, we obtain several new order-explicit results on the concentration and normal approximation of high-dimensional U.S.
arXiv Detail & Related papers (2024-05-13T15:46:11Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Sampling and estimation on manifolds using the Langevin diffusion [45.57801520690309]
Two estimators of linear functionals of $mu_phi $ based on the discretized Markov process are considered.
Error bounds are derived for sampling and estimation using a discretization of an intrinsically defined Langevin diffusion.
arXiv Detail & Related papers (2023-12-22T18:01:11Z) - Semiparametric Efficient Inference in Adaptive Experiments [29.43493007296859]
We consider the problem of efficient inference of the Average Treatment Effect in a sequential experiment where the policy governing the assignment of subjects to treatment or control can change over time.
We first provide a central limit theorem for the Adaptive Augmented Inverse-Probability Weighted estimator, which is semi efficient, under weaker assumptions than those previously made in the literature.
We then consider sequential inference setting, deriving both propensity and nonasymptotic confidence sequences that are considerably tighter than previous methods.
arXiv Detail & Related papers (2023-11-30T06:25:06Z) - Double Robust Bayesian Inference on Average Treatment Effects [2.458652618559425]
We propose a double robust Bayesian inference procedure on the average treatment effect (ATE) under unconfoundedness.
For our new Bayesian approach, we first adjust the prior distributions of the conditional mean functions, and then correct the posterior distribution of the resulting ATE.
arXiv Detail & Related papers (2022-11-29T15:32:25Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Mixture Proportion Estimation and PU Learning: A Modern Approach [47.34499672878859]
Given only positive examples and unlabeled examples, we might hope to estimate an accurate positive-versus-negative classifier.
classical methods for both problems break down in high-dimensional settings.
We propose two simple techniques: Best Bin Estimation (BBE) and Value Ignoring Risk (CVIR)
arXiv Detail & Related papers (2021-11-01T14:42:23Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
Random Function Approach [38.45568741734893]
Inference in our GP model is done by a single feed forward pass through the network, significantly faster than semi-amortized methods.
We show that our approach attains higher test data likelihood than the state-of-the-arts on several benchmark datasets.
arXiv Detail & Related papers (2021-02-05T13:01:12Z) - Batch Stationary Distribution Estimation [98.18201132095066]
We consider the problem of approximating the stationary distribution of an ergodic Markov chain given a set of sampled transitions.
We propose a consistent estimator that is based on recovering a correction ratio function over the given data.
arXiv Detail & Related papers (2020-03-02T09:10:01Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.