Probabilistic task modelling for meta-learning
- URL: http://arxiv.org/abs/2106.04802v1
- Date: Wed, 9 Jun 2021 04:34:12 GMT
- Title: Probabilistic task modelling for meta-learning
- Authors: Cuong C. Nguyen and Thanh-Toan Do and Gustavo Carneiro
- Abstract summary: We propose a generative probabilistic model for collections of tasks used in meta-learning.
The proposed model combines variational auto-encoding and latent Dirichlet allocation to model each task as a mixture of Gaussian distribution in an embedding space.
- Score: 44.072592379328036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose probabilistic task modelling -- a generative probabilistic model
for collections of tasks used in meta-learning. The proposed model combines
variational auto-encoding and latent Dirichlet allocation to model each task as
a mixture of Gaussian distribution in an embedding space. Such modelling
provides an explicit representation of a task through its task-theme mixture.
We present an efficient approximation inference technique based on variational
inference method for empirical Bayes parameter estimation. We perform empirical
evaluations to validate the task uncertainty and task distance produced by the
proposed method through correlation diagrams of the prediction accuracy on
testing tasks. We also carry out experiments of task selection in meta-learning
to demonstrate how the task relatedness inferred from the proposed model help
to facilitate meta-learning algorithms.
Related papers
- MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data.
Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts.
arXiv Detail & Related papers (2024-05-26T13:11:55Z) - Modeling Output-Level Task Relatedness in Multi-Task Learning with Feedback Mechanism [7.479892725446205]
Multi-task learning (MTL) is a paradigm that simultaneously learns multiple tasks by sharing information at different levels.
We introduce a posteriori information into the model, considering that different tasks may produce correlated outputs with mutual influences.
We achieve this by incorporating a feedback mechanism into MTL models, where the output of one task serves as a hidden feature for another task.
arXiv Detail & Related papers (2024-04-01T03:27:34Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Learning Tensor Representations for Meta-Learning [8.185750946886001]
We introduce a tensor-based model of shared representation for meta-learning from a diverse set of tasks.
Substituting the estimated tensor from the first step allows us estimating the task-specific parameters with very few samples of the new task.
arXiv Detail & Related papers (2022-01-18T23:01:35Z) - Mixture of basis for interpretable continual learning with distribution
shifts [1.6114012813668934]
Continual learning in environments with shifting data distributions is a challenging problem with several real-world applications.
We propose a novel approach called mixture of Basismodels (MoB) for addressing this problem setting.
arXiv Detail & Related papers (2022-01-05T22:53:15Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
Key idea of meta-learning for few-shot classification is to mimic the few-shot situations faced at test time.
We propose an adaptive task sampling method to improve the generalization performance.
arXiv Detail & Related papers (2020-07-17T03:15:53Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - PAC-Bayes meta-learning with implicit task-specific posteriors [37.32107678838193]
We introduce a new and rigorously-formulated PAC-Bayes meta-learning algorithm that solves few-shot learning.
We show that the models trained with our proposed meta-learning algorithm are well calibrated and accurate.
arXiv Detail & Related papers (2020-03-05T06:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.