論文の概要: Auto-tagging of Short Conversational Sentences using Natural Language
Processing Methods
- arxiv url: http://arxiv.org/abs/2106.04959v1
- Date: Wed, 9 Jun 2021 10:14:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 15:13:15.713241
- Title: Auto-tagging of Short Conversational Sentences using Natural Language
Processing Methods
- Title(参考訳): 自然言語処理を用いた短い会話文の自動タグ付け
- Authors: \c{S}\"ukr\"u Ozan, D. Emre Ta\c{s}ar
- Abstract要約: 手動で10の基本的なカテゴリに約14万のビジターインプットをタグ付けしました。
我々は3種類の最先端モデルを検討し、自動タグ付け機能について報告した。
これらの実験で使用されるモデルの実装は、GitHubリポジトリからクローンすることができ、同様の自動タグ問題に対して、多くの労力なしでテストできます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we aim to find a method to auto-tag sentences specific to a
domain. Our training data comprises short conversational sentences extracted
from chat conversations between company's customer representatives and web site
visitors. We manually tagged approximately 14 thousand visitor inputs into ten
basic categories, which will later be used in a transformer-based language
model with attention mechanisms for the ultimate goal of developing a chatbot
application that can produce meaningful dialogue. We considered three different
state-of-the-art models and reported their auto-tagging capabilities. We
achieved the best performance with the bidirectional encoder representation
from transformers (BERT) model. Implementation of the models used in these
experiments can be cloned from our GitHub repository and tested for similar
auto-tagging problems without much effort.
- Abstract(参考訳): 本研究では,ドメイン固有の文を自動的にタグ付けする手法を提案する。
トレーニングデータは、企業の顧客代表者とウェブサイト訪問者とのチャットから抽出された短い会話文からなる。
約14万の訪問者入力を10の基本的なカテゴリに手作業でタグ付けし,その後,有意義な対話を生成可能なチャットボットアプリケーションの開発という究極の目標に向けて,トランスフォーマーベースの言語モデルで使用する予定だ。
我々は3つの異なる最先端モデルを検討し,自動タグ付け機能を報告した。
変換器(BERT)モデルによる双方向エンコーダ表現で最高の性能を実現した。
これらの実験で使用されるモデルの実装は、GitHubリポジトリからクローンすることができ、同様の自動タグ問題に対して、多くの労力なしでテストできます。
関連論文リスト
- Representing Rule-based Chatbots with Transformers [35.30128900987116]
ELIZAプログラムを実装したTransformerを構築することで,先行作業に基づいて構築する。
ELIZAは会話設定の際立った課題をいくつか挙げている。
我々は、合成されたERIZA会話のデータセット上でトランスフォーマーを訓練し、モデルが学習するメカニズムを調査する。
論文 参考訳(メタデータ) (2024-07-15T17:45:53Z) - Modeling Real-Time Interactive Conversations as Timed Diarized Transcripts [11.067252960486272]
本稿では,事前学習した言語モデルを用いて,リアルタイム対話型会話をシミュレートする簡易かつ汎用的な手法を提案する。
本稿では,インスタントメッセージ対話と音声会話の2つのケーススタディを用いて,この手法の可能性を実証する。
論文 参考訳(メタデータ) (2024-05-21T21:14:31Z) - Computational Argumentation-based Chatbots: a Survey [0.4024850952459757]
本調査は,このような議論に基づくボットに関する論文をレビューするために,文献を精査する。
このアプローチの欠点とメリットについて結論を導きます。
また、Transformerベースのアーキテクチャや最先端の大規模言語モデルとの将来の開発や統合も検討している。
論文 参考訳(メタデータ) (2024-01-07T11:20:42Z) - RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control [140.48218261864153]
本研究では,インターネット規模のデータに基づいて学習した視覚言語モデルを,エンドツーエンドのロボット制御に直接組み込む方法について検討する。
提案手法は,インターネット規模のトレーニングから,RT-2による創発的能力の獲得を可能にした。
論文 参考訳(メタデータ) (2023-07-28T21:18:02Z) - Stateful Memory-Augmented Transformers for Efficient Dialogue Modeling [69.31802246621963]
本稿では、既存のトレーニング済みエンコーダデコーダモデルと互換性のある新しいメモリ拡張トランスを提案する。
事前訓練された変換器と共に別々のメモリモジュールを組み込むことで、モデルはメモリ状態と現在の入力コンテキストの間で情報を効果的に交換することができる。
論文 参考訳(メタデータ) (2022-09-15T22:37:22Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
ダイアログのための大規模事前学習言語モデルであるGODELを紹介する。
GODELは、数ショットの微調整設定で、最先端の事前訓練ダイアログモデルより優れていることを示す。
評価手法の新たな特徴は,応答の有用性を評価するユーティリティの概念の導入である。
論文 参考訳(メタデータ) (2022-06-22T18:19:32Z) - Vector Representations of Idioms in Conversational Systems [1.6507910904669727]
我々は,2つの課題に対して,潜在的表現(PIE)-英語イディオムコーパスを利用する。
SoTA T5モデルを用いて分類作業において,98%のマクロF1スコアの最先端(SoTA)を達成した。
その結果、イディオムコーパスで訓練されたモデルは、イディオム71.9%を含むプロンプトに対してより適合した反応を生じさせることがわかった。
論文 参考訳(メタデータ) (2022-05-07T14:50:05Z) - DialogVED: A Pre-trained Latent Variable Encoder-Decoder Model for
Dialog Response Generation [80.45816053153722]
DialogVEDは、拡張エンコーダデコーダ事前トレーニングフレームワークに連続潜伏変数を導入し、応答の関連性と多様性を高める。
我々は,PersonaChat,DailyDialog,DSTC7-AVSDベンチマークを用いて応答生成実験を行った。
論文 参考訳(メタデータ) (2022-04-27T16:18:15Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
我々は、事前訓練されたフリーズトランスフォーマー言語モデルから文レベルのオートエンコーダを構築する。
我々は、文ボトルネックと1層修飾トランスフォーマーデコーダのみを訓練しながら、マスク付き言語モデリングの目的を生成的・認知的言語として適応する。
本研究では,テキスト類似性タスク,スタイル転送,単一文分類タスクにおける事前学習されたトランスフォーマーからの表現をGLUEベンチマークで抽出する手法よりも,大規模な事前学習モデルよりも少ないパラメータを用いて,より高品質な文表現を実現することを示す。
論文 参考訳(メタデータ) (2021-08-31T19:39:55Z) - CloneBot: Personalized Dialogue-Response Predictions [0.0]
プロジェクトのタスクは、話者id、チャット履歴、発話クエリが与えられた場合に、会話中の応答発話を予測できるモデルを作成することだった。
モデルは各話者にパーソナライズされる。
このタスクは、人間のような方法で会話する音声ボットをライブ会話で構築するのに有用なツールである。
論文 参考訳(メタデータ) (2021-03-31T01:15:37Z) - The Adapter-Bot: All-In-One Controllable Conversational Model [66.48164003532484]
本稿では、DialGPTなどの固定バックボーンモデルを用いて、異なるアダプタを介してオンデマンド対話スキルをトリガーする対話モデルを提案する。
スキルに応じて、モデルはテキスト、テーブル、強調応答などの複数の知識タイプを処理できる。
我々は,既存の会話モデルと比較し,自動評価を用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2020-08-28T10:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。