Quickest change detection with unknown parameters: Constant complexity
and near optimality
- URL: http://arxiv.org/abs/2106.05061v1
- Date: Wed, 9 Jun 2021 13:29:26 GMT
- Title: Quickest change detection with unknown parameters: Constant complexity
and near optimality
- Authors: Firas Jarboui, Viannet Perchet
- Abstract summary: We consider the quickest change detection problem where both the parameters of pre- and post- change distributions are unknown.
We derive a new scalable approximate algorithm with near optimal performance that runsin$mathcalO(1)$, adapted to even more complex Markovian settings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the quickest change detection problem where both the parameters
of pre- and post- change distributions are unknown, which prevents the use of
classical simple hypothesis testing. Without additional assumptions, optimal
solutions are not tractable as they rely on some minimax and robust variant of
the objective. As a consequence, change points might be detected too late for
practical applications (in economics, health care or maintenance for instance).
Available constant complexity techniques typically solve a relaxed version of
the problem, deeply relying on very specific probability distributions and/or
some very precise additional knowledge. We consider a totally different
approach that leverages the theoretical asymptotic properties of optimal
solutions to derive a new scalable approximate algorithm with near optimal
performance that runs~in~$\mathcal{O}(1)$, adapted to even more complex
Markovian settings.
Related papers
- Approximation Algorithms for Combinatorial Optimization with Predictions [3.7235228254732524]
We use predictions to improve over approximation guarantees of classic algorithms.
Our algorithms produce optimal solutions when provided with perfect predictions.
Although we show our approach to be optimal for this class of problems as a whole, there is a potential for exploiting specific structural properties of individual problems to obtain improved bounds.
arXiv Detail & Related papers (2024-11-25T17:31:34Z) - Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Distributed Fractional Bayesian Learning for Adaptive Optimization [7.16937736207894]
This paper considers a distributed adaptive optimization problem, where all agents only have access to their local cost functions with a common unknown parameter.
We aim to provide valuable insights for addressing parameter uncertainty in distributed optimization problems and simultaneously find the optimal solution.
arXiv Detail & Related papers (2024-04-17T13:09:33Z) - Dual-Directed Algorithm Design for Efficient Pure Exploration [9.728332815218181]
We consider pure-exploration problems in the context of sequential adaptive experiments with a finite set of alternatives.
We formulate the problem complexity measure as a maximin optimization problem for the static fixed-budget, fixed-confidence, and posterior convergence rate settings.
Our algorithm attains optimality in $varepsilon$-best-arm identification (or ranking and selection with a probability of good selection guarantee) and thresholding bandits.
arXiv Detail & Related papers (2023-10-30T07:29:17Z) - High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise [96.80184504268593]
gradient, clipping is one of the key algorithmic ingredients to derive good high-probability guarantees.
Clipping can spoil the convergence of the popular methods for composite and distributed optimization.
arXiv Detail & Related papers (2023-10-03T07:49:17Z) - Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization [10.009748368458409]
We present a framework for smooth optimization of explicitly regularized objectives for (structured) sparsity.
Our method enables fully differentiable approximation-free optimization and is thus compatible with the ubiquitous gradient descent paradigm in deep learning.
arXiv Detail & Related papers (2023-07-07T13:06:12Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Instance-optimality in optimal value estimation: Adaptivity via
variance-reduced Q-learning [99.34907092347733]
We analyze the problem of estimating optimal $Q$-value functions for a discounted Markov decision process with discrete states and actions.
Using a local minimax framework, we show that this functional arises in lower bounds on the accuracy on any estimation procedure.
In the other direction, we establish the sharpness of our lower bounds, up to factors logarithmic in the state and action spaces, by analyzing a variance-reduced version of $Q$-learning.
arXiv Detail & Related papers (2021-06-28T00:38:54Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.