Distributed Fractional Bayesian Learning for Adaptive Optimization
- URL: http://arxiv.org/abs/2404.11354v1
- Date: Wed, 17 Apr 2024 13:09:33 GMT
- Title: Distributed Fractional Bayesian Learning for Adaptive Optimization
- Authors: Yaqun Yang, Jinlong Lei, Guanghui Wen, Yiguang Hong,
- Abstract summary: This paper considers a distributed adaptive optimization problem, where all agents only have access to their local cost functions with a common unknown parameter.
We aim to provide valuable insights for addressing parameter uncertainty in distributed optimization problems and simultaneously find the optimal solution.
- Score: 7.16937736207894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers a distributed adaptive optimization problem, where all agents only have access to their local cost functions with a common unknown parameter, whereas they mean to collaboratively estimate the true parameter and find the optimal solution over a connected network. A general mathematical framework for such a problem has not been studied yet. We aim to provide valuable insights for addressing parameter uncertainty in distributed optimization problems and simultaneously find the optimal solution. Thus, we propose a novel Prediction while Optimization scheme, which utilizes distributed fractional Bayesian learning through weighted averaging on the log-beliefs to update the beliefs of unknown parameters, and distributed gradient descent for renewing the estimation of the optimal solution. Then under suitable assumptions, we prove that all agents' beliefs and decision variables converge almost surely to the true parameter and the optimal solution under the true parameter, respectively. We further establish a sublinear convergence rate for the belief sequence. Finally, numerical experiments are implemented to corroborate the theoretical analysis.
Related papers
- BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification [5.031974232392534]
This work addresses data-driven inverse optimization (IO)
The goal is to estimate unknown parameters in an optimization model from observed decisions that can be assumed to be optimal or near-optimal.
arXiv Detail & Related papers (2024-05-28T06:52:17Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Optimize-via-Predict: Realizing out-of-sample optimality in data-driven
optimization [0.0]
We examine a formulation for data-driven optimization wherein the decision-maker is not privy to the true distribution.
We define a prescriptive solution as a decisionvendor rule mapping such a data set to decisions.
We present an optimization problem that would solve for such an out-of-sample optimal solution, and does so efficiently by a combination of sampling and bisection search algorithms.
arXiv Detail & Related papers (2023-09-20T08:48:50Z) - Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization [10.009748368458409]
We present a framework for smooth optimization of explicitly regularized objectives for (structured) sparsity.
Our method enables fully differentiable approximation-free optimization and is thus compatible with the ubiquitous gradient descent paradigm in deep learning.
arXiv Detail & Related papers (2023-07-07T13:06:12Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
Many real-world optimization problems uncertain parameters with probability can be estimated using contextual feature information.
In contrast to the standard approach of estimating the distribution of uncertain parameters, we propose an integrated conditional estimation approach.
We show that our ICEO approach is theally consistent under moderate conditions.
arXiv Detail & Related papers (2021-10-24T04:49:35Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Stochastic Learning Approach to Binary Optimization for Optimal Design
of Experiments [0.0]
We present a novel approach to binary optimization for optimal experimental design (OED) for Bayesian inverse problems governed by mathematical models such as partial differential equations.
The OED utility function, namely, the regularized optimality gradient, is cast into an objective function in the form of an expectation over a Bernoulli distribution.
The objective is then solved by using a probabilistic optimization routine to find an optimal observational policy.
arXiv Detail & Related papers (2021-01-15T03:54:12Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.