論文の概要: Offline Inverse Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2106.05068v1
- Date: Wed, 9 Jun 2021 13:44:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 15:02:54.398954
- Title: Offline Inverse Reinforcement Learning
- Title(参考訳): オフライン逆強化学習
- Authors: Firas Jarboui, Vianney Perchet
- Abstract要約: オフラインRLは、固定された探索的なデータセットが利用可能になったときに最適なポリシーを学ぶことである。
オンライン環境での擬似演出の状態を達成したIRL技術の成功に触発されて、GANベースのデータ拡張手順を利用して、最初のオフラインIRLアルゴリズムを構築した。
- 参考スコア(独自算出の注目度): 24.316047317028147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of offline RL is to learn optimal policies when a fixed
exploratory demonstrations data-set is available and sampling additional
observations is impossible (typically if this operation is either costly or
rises ethical questions). In order to solve this problem, off the shelf
approaches require a properly defined cost function (or its evaluation on the
provided data-set), which are seldom available in practice. To circumvent this
issue, a reasonable alternative is to query an expert for few optimal
demonstrations in addition to the exploratory data-set. The objective is then
to learn an optimal policy w.r.t. the expert's latent cost function. Current
solutions either solve a behaviour cloning problem (which does not leverage the
exploratory data) or a reinforced imitation learning problem (using a fixed
cost function that discriminates available exploratory trajectories from expert
ones). Inspired by the success of IRL techniques in achieving state of the art
imitation performances in online settings, we exploit GAN based data
augmentation procedures to construct the first offline IRL algorithm. The
obtained policies outperformed the aforementioned solutions on multiple OpenAI
gym environments.
- Abstract(参考訳): オフラインRLの目的は、固定探索データセットが利用可能で、追加の観測をサンプリングすることが不可能である場合(典型的には、この操作がコストがかかるか倫理的な問題を引き起こす場合)に最適なポリシーを学ぶことである。
この問題を解決するために、オフ・シェルフのアプローチでは、適切に定義されたコスト関数(または提供されたデータセットに対する評価)が必要となる。
この問題を回避するためには、探索的データセットに加えて、専門家にいくつかの最適なデモンストレーションを求めるのが妥当な方法だ。
目的は最適な政策を学習することである。
専門家の潜伏コスト関数です
現在のソリューションは、行動クローニング問題(探索データを利用しない)または強化された模倣学習問題(専門家から利用可能な探索軌道を識別する固定コスト関数を使用する)を解決する。
オンライン環境での擬似演出の状態を達成したIRL技術の成功に触発されて、GANベースのデータ拡張手順を利用して、最初のオフラインIRLアルゴリズムを構築する。
得られたポリシーは、前述の複数のOpenAIジム環境におけるソリューションよりも優れていた。
関連論文リスト
- How to Leverage Diverse Demonstrations in Offline Imitation Learning [39.24627312800116]
不完全な実演を伴うオフライン模倣学習(IL)は、専門家データの不足により注目を集めている。
本稿では, 結果の状態に基づいて正の挙動を識別する, 単純で効果的なデータ選択手法を提案する。
次に、専門家と選択したデータを正しく活用できる軽量な行動クローニングアルゴリズムを考案する。
論文 参考訳(メタデータ) (2024-05-24T04:56:39Z) - Adversarial Imitation Learning On Aggregated Data [0.0]
逆強化学習(IRL: Inverse Reinforcement Learning)は、いくつかの専門家による実証から最適なポリシーを学習し、適切な報酬関数を指定するという面倒なプロセスを避ける。
本稿では,AILAD(Adversarial Imitation Learning on Aggregated Data)と呼ばれる動的適応手法を用いて,これらの要件を除去する手法を提案する。
非線型報酬関数とそれに付随する最適ポリシーの両方を、敵対的枠組みを用いて共役的に学習する。
論文 参考訳(メタデータ) (2023-11-14T22:13:38Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
オンライン学習時にオフラインデータを活用するために、既存のオフライン手法を単純に適用できることを示します。
私たちはこれらの設計選択を広範囲に改善し、パフォーマンスに最も影響を与える重要な要因を示します。
これらのシンプルなレコメンデーションの正しい適用によって、既存のアプローチよりも$mathbf2.5times$の改善が得られます。
論文 参考訳(メタデータ) (2023-02-06T17:30:22Z) - Discriminator-Weighted Offline Imitation Learning from Suboptimal
Demonstrations [5.760034336327491]
エージェントがオンライン環境を付加せずに最適な専門家行動ポリシーを学習することを目的としたオフライン学習(IL)の課題について検討する。
専門家と非専門家のデータを区別するために,新たな識別器を導入する。
提案アルゴリズムは,ベースラインアルゴリズムよりも高いリターンと高速なトレーニング速度を実現する。
論文 参考訳(メタデータ) (2022-07-20T17:29:04Z) - When Should We Prefer Offline Reinforcement Learning Over Behavioral
Cloning? [86.43517734716606]
オフライン強化学習(RL)アルゴリズムは、オンラインインタラクションなしで、以前に収集した経験を生かして効果的なポリシーを得ることができる。
行動クローニング(BC)アルゴリズムは、教師付き学習を通じてデータセットのサブセットを模倣する。
十分にノイズの多い準最適データに基づいて訓練されたポリシーは、専門家データを持つBCアルゴリズムよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2022-04-12T08:25:34Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Reinforcement Learning with Sparse Rewards using Guidance from Offline
Demonstration [9.017416068706579]
実世界の強化学習(RL)における大きな課題は、報酬フィードバックの空間性である。
我々は,準最適行動ポリシーによって生成されたオフラインのデモデータを利用するアルゴリズムを開発した。
我々は、最先端アプローチよりもアルゴリズムの優れた性能を実証する。
論文 参考訳(メタデータ) (2022-02-09T18:45:40Z) - An Experimental Design Perspective on Model-Based Reinforcement Learning [73.37942845983417]
環境からの状態遷移を観察するのは費用がかかる。
標準RLアルゴリズムは通常、学習するために多くの観測を必要とする。
本稿では,マルコフ決定過程について,状態-作用対がどの程度の情報を提供するかを定量化する獲得関数を提案する。
論文 参考訳(メタデータ) (2021-12-09T23:13:57Z) - Online Apprenticeship Learning [58.45089581278177]
見習い学習(AL)では、コスト関数にアクセスせずにマルコフ決定プロセス(MDP)が与えられます。
目標は、事前に定義されたコスト関数のセットで専門家のパフォーマンスに一致するポリシーを見つけることです。
ミラー下降型ノンレグレットアルゴリズムを2つ組み合わせることで,OAL問題を効果的に解くことができることを示す。
論文 参考訳(メタデータ) (2021-02-13T12:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。