Pretrained Encoders are All You Need
- URL: http://arxiv.org/abs/2106.05139v1
- Date: Wed, 9 Jun 2021 15:27:25 GMT
- Title: Pretrained Encoders are All You Need
- Authors: Mina Khan, P Srivatsa, Advait Rane, Shriram Chenniappa, Rishabh Anand,
Sherjil Ozair, and Pattie Maes
- Abstract summary: Self-supervised models have shown successful transfer to diverse settings.
We also explore fine-tuning pretrained representations with self-supervised techniques.
Our results show that pretrained representations are at par with state-of-the-art self-supervised methods trained on domain-specific data.
- Score: 23.171881382391074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-efficiency and generalization are key challenges in deep learning and
deep reinforcement learning as many models are trained on large-scale,
domain-specific, and expensive-to-label datasets. Self-supervised models
trained on large-scale uncurated datasets have shown successful transfer to
diverse settings. We investigate using pretrained image representations and
spatio-temporal attention for state representation learning in Atari. We also
explore fine-tuning pretrained representations with self-supervised techniques,
i.e., contrastive predictive coding, spatio-temporal contrastive learning, and
augmentations. Our results show that pretrained representations are at par with
state-of-the-art self-supervised methods trained on domain-specific data.
Pretrained representations, thus, yield data and compute-efficient state
representations. https://github.com/PAL-ML/PEARL_v1
Related papers
- Comparison of self-supervised in-domain and supervised out-domain transfer learning for bird species recognition [0.19183348587701113]
Transferring the weights of a pre-trained model to assist another task has become a crucial part of modern deep learning.
Our experiments will demonstrate the usefulness of in-domain models and datasets for bird species recognition.
arXiv Detail & Related papers (2024-04-26T08:47:28Z) - In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene
Classification [5.323049242720532]
Self-supervised learning has emerged as a promising approach for remote sensing image classification.
We present a study of different self-supervised pre-training strategies and evaluate their effect across 14 downstream datasets.
arXiv Detail & Related papers (2023-07-04T10:57:52Z) - Palm up: Playing in the Latent Manifold for Unsupervised Pretraining [31.92145741769497]
We propose an algorithm that exhibits an exploratory behavior whilst it utilizes large diverse datasets.
Our key idea is to leverage deep generative models that are pretrained on static datasets and introduce a dynamic model in the latent space.
We then employ an unsupervised reinforcement learning algorithm to explore in this environment and perform unsupervised representation learning on the collected data.
arXiv Detail & Related papers (2022-10-19T22:26:12Z) - On the Transferability of Pre-trained Language Models: A Study from
Artificial Datasets [74.11825654535895]
Pre-training language models (LMs) on large-scale unlabeled text data makes the model much easier to achieve exceptional downstream performance.
We study what specific traits in the pre-training data, other than the semantics, make a pre-trained LM superior to their counterparts trained from scratch on downstream tasks.
arXiv Detail & Related papers (2021-09-08T10:39:57Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Curious Representation Learning for Embodied Intelligence [81.21764276106924]
Self-supervised representation learning has achieved remarkable success in recent years.
Yet to build truly intelligent agents, we must construct representation learning algorithms that can learn from environments.
We propose a framework, curious representation learning, which jointly learns a reinforcement learning policy and a visual representation model.
arXiv Detail & Related papers (2021-05-03T17:59:20Z) - i-Mix: A Domain-Agnostic Strategy for Contrastive Representation
Learning [117.63815437385321]
We propose i-Mix, a simple yet effective domain-agnostic regularization strategy for improving contrastive representation learning.
In experiments, we demonstrate that i-Mix consistently improves the quality of learned representations across domains.
arXiv Detail & Related papers (2020-10-17T23:32:26Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Laplacian Denoising Autoencoder [114.21219514831343]
We propose to learn data representations with a novel type of denoising autoencoder.
The noisy input data is generated by corrupting latent clean data in the gradient domain.
Experiments on several visual benchmarks demonstrate that better representations can be learned with the proposed approach.
arXiv Detail & Related papers (2020-03-30T16:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.