Comparison of self-supervised in-domain and supervised out-domain transfer learning for bird species recognition
- URL: http://arxiv.org/abs/2404.17252v1
- Date: Fri, 26 Apr 2024 08:47:28 GMT
- Title: Comparison of self-supervised in-domain and supervised out-domain transfer learning for bird species recognition
- Authors: Houtan Ghaffari, Paul Devos,
- Abstract summary: Transferring the weights of a pre-trained model to assist another task has become a crucial part of modern deep learning.
Our experiments will demonstrate the usefulness of in-domain models and datasets for bird species recognition.
- Score: 0.19183348587701113
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transferring the weights of a pre-trained model to assist another task has become a crucial part of modern deep learning, particularly in data-scarce scenarios. Pre-training refers to the initial step of training models outside the current task of interest, typically on another dataset. It can be done via supervised models using human-annotated datasets or self-supervised models trained on unlabeled datasets. In both cases, many pre-trained models are available to fine-tune for the task of interest. Interestingly, research has shown that pre-trained models from ImageNet can be helpful for audio tasks despite being trained on image datasets. Hence, it's unclear whether in-domain models would be advantageous compared to competent out-domain models, such as convolutional neural networks from ImageNet. Our experiments will demonstrate the usefulness of in-domain models and datasets for bird species recognition by leveraging VICReg, a recent and powerful self-supervised method.
Related papers
- Transfer Learning for Passive Sonar Classification using Pre-trained Audio and ImageNet Models [39.85805843651649]
This study compares pre-trained Audio Neural Networks (PANNs) and ImageNet pre-trained models.
It was observed that the ImageNet pre-trained models slightly out-perform pre-trained audio models in passive sonar classification.
arXiv Detail & Related papers (2024-09-20T20:13:45Z) - Hybrid diffusion models: combining supervised and generative pretraining for label-efficient fine-tuning of segmentation models [55.2480439325792]
We propose a new pretext task, which is to perform simultaneously image denoising and mask prediction on the first domain.
We show that fine-tuning a model pretrained using this approach leads to better results than fine-tuning a similar model trained using either supervised or unsupervised pretraining.
arXiv Detail & Related papers (2024-08-06T20:19:06Z) - Regularized Training with Generated Datasets for Name-Only Transfer of Vision-Language Models [36.59260354292177]
Recent advancements in text-to-image generation have inspired researchers to generate datasets tailored for perception models using generative models.
We aim to fine-tune vision-language models to a specific classification model without access to any real images.
Despite the high fidelity of generated images, we observed a significant performance degradation when fine-tuning the model using the generated datasets.
arXiv Detail & Related papers (2024-06-08T10:43:49Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Toward a Foundation Model for Time Series Data [34.1973242428317]
A foundation model is a machine learning model trained on a large and diverse set of data.
We develop an effective time series foundation model by leveraging unlabeled samples from multiple domains.
arXiv Detail & Related papers (2023-10-05T21:44:50Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z) - Variation of Gender Biases in Visual Recognition Models Before and After
Finetuning [29.55318393877906]
We introduce a framework to measure how biases change before and after fine-tuning a large scale visual recognition model for a downstream task.
We find that supervised models trained on datasets such as ImageNet-21k are more likely to retain their pretraining biases.
We also find that models finetuned on larger scale datasets are more likely to introduce new biased associations.
arXiv Detail & Related papers (2023-03-14T03:42:47Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Revealing Secrets From Pre-trained Models [2.0249686991196123]
Transfer-learning has been widely adopted in many emerging deep learning algorithms.
We show that pre-trained models and fine-tuned models have significantly high similarities in weight values.
We propose a new model extraction attack that reveals the model architecture and the pre-trained model used by the black-box victim model.
arXiv Detail & Related papers (2022-07-19T20:19:03Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.