論文の概要: Rethinking Transfer Learning for Medical Image Classification
- arxiv url: http://arxiv.org/abs/2106.05152v8
- Date: Sun, 26 May 2024 19:45:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 05:05:50.220799
- Title: Rethinking Transfer Learning for Medical Image Classification
- Title(参考訳): 医用画像分類のための転帰学習の再考
- Authors: Le Peng, Hengyue Liang, Gaoxiang Luo, Taihui Li, Ju Sun,
- Abstract要約: 事前訓練された深層モデルからの伝達学習(TL)は、現代の医用画像分類(MIC)における標準的実践である
本稿では,TruncatedTLという,適切なボトム層を再利用・微調整し,残りの層を直接破棄する,新たな戦略をこのファミリーに追加する。
これにより、他の微分TL法と比較して、優れたMIC性能だけでなく、効率的な推論のためのコンパクトモデルが得られる。
- 参考スコア(独自算出の注目度): 2.9161778726049525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning (TL) from pretrained deep models is a standard practice in modern medical image classification (MIC). However, what levels of features to be reused are problem-dependent, and uniformly finetuning all layers of pretrained models may be suboptimal. This insight has partly motivated the recent differential TL strategies, such as TransFusion (TF) and layer-wise finetuning (LWFT), which treat the layers in the pretrained models differentially. In this paper, we add one more strategy into this family, called TruncatedTL, which reuses and finetunes appropriate bottom layers and directly discards the remaining layers. This yields not only superior MIC performance but also compact models for efficient inference, compared to other differential TL methods. Our code is available at: https://github.com/sun-umn/TTL
- Abstract(参考訳): 事前訓練された深層モデルからの伝達学習(TL)は、現代の医用画像分類(MIC)における標準的実践である。
しかしながら、再利用すべき機能のレベルは問題に依存しており、事前訓練されたモデルのすべての層を均一に微調整することは、最適ではないかもしれない。
この知見は、TransFusion (TF) やLayer-wise Finetuning (LWFT) のような最近の微分TL戦略を部分的に動機付け、事前訓練されたモデルの層を微分的に扱う。
本稿では,TruncatedTLという,適切なボトム層を再利用・微調整し,残りの層を直接破棄する,新たな戦略をこのファミリーに追加する。
これにより、他の微分TL法と比較して、優れたMIC性能だけでなく、効率的な推論のためのコンパクトモデルが得られる。
私たちのコードは、https://github.com/sun-umn/TTLで利用可能です。
関連論文リスト
- Classifier-guided Gradient Modulation for Enhanced Multimodal Learning [50.7008456698935]
Gradient-Guided Modulation (CGGM) は,マルチモーダル学習と勾配のバランスをとる新しい手法である。
UPMC-Food 101, CMU-MOSI, IEMOCAP, BraTSの4つのマルチモーダルデータセットについて広範な実験を行った。
CGGMはすべてのベースラインや最先端のメソッドを一貫して上回る。
論文 参考訳(メタデータ) (2024-11-03T02:38:43Z) - SurgeryV2: Bridging the Gap Between Model Merging and Multi-Task Learning with Deep Representation Surgery [54.866490321241905]
モデルマージに基づくマルチタスク学習(MTL)は、複数のエキスパートモデルをマージしてMTLを実行するための有望なアプローチを提供する。
本稿では,統合モデルの表現分布について検討し,「表現バイアス」の重要な問題を明らかにする。
このバイアスは、マージされたMTLモデルの表現と専門家モデルの間の大きな分布ギャップから生じ、マージされたMTLモデルの最適下性能に繋がる。
論文 参考訳(メタデータ) (2024-10-18T11:49:40Z) - Chip-Tuning: Classify Before Language Models Say [25.546473157624945]
チップチューニングは、分類問題に対するシンプルで効果的な構造化プルーニングフレームワークである。
チップチューニングは,従来の最先端のベースラインを精度とプルーニング比の両方で大幅に上回っていることを示す。
また、チップチューニングはマルチモーダルモデルに適用でき、モデル微調整と組み合わせることで、優れた互換性が証明できる。
論文 参考訳(メタデータ) (2024-10-09T04:35:22Z) - Inheritune: Training Smaller Yet More Attentive Language Models [61.363259848264725]
Inherituneは、より小型で高性能な言語モデルを開発するための、シンプルで効果的なトレーニングレシピである。
Inheritune は OpenWebText-9B や FineWeb_edu のようなデータセット上で GPT-2 モデルのさまざまなサイズのトレーニングを可能にする。
論文 参考訳(メタデータ) (2024-04-12T17:53:34Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
ニューラルネットワークパラメータの平均化は、2つの独立したモデルの知識の直感的な方法である。
フェデレートラーニングにおいて最も顕著に用いられている。
私たちは、単一グループやグループを平均化するモデルの性能を分析します。
論文 参考訳(メタデータ) (2023-07-13T09:39:10Z) - Surgical Fine-Tuning Improves Adaptation to Distribution Shifts [114.17184775397067]
分散シフト下での伝達学習の一般的なアプローチは、事前訓練されたモデルの最後の数層を微調整することである。
本稿は, 階層のサブセットを選択的に微調整する手法が, 一般的に用いられている微調整手法と一致し, 性能が良くないことを示す。
論文 参考訳(メタデータ) (2022-10-20T17:59:15Z) - Slimmable Networks for Contrastive Self-supervised Learning [69.9454691873866]
自己教師付き学習は、大規模なモデルを事前訓練する上で大きな進歩を遂げるが、小さなモデルでは苦労する。
追加の教師を必要とせず、訓練済みの小型モデルを得るための1段階のソリューションも導入する。
スリム化可能なネットワークは、完全なネットワークと、様々なネットワークを得るために一度にトレーニングできるいくつかの重み共有サブネットワークから構成される。
論文 参考訳(メタデータ) (2022-09-30T15:15:05Z) - Multi-layer Clustering-based Residual Sparsifying Transform for Low-dose
CT Image Reconstruction [11.011268090482575]
本稿では,X線CT(Computerd Tomography)再構成のためのネットワーク構造スペーシング変換学習手法を提案する。
我々は, PWLS (Palalized weighted least squares) 再構成において, MCSTモデルを正規化器に配置することにより低用量CT再構成にMCSTモデルを適用した。
シミュレーションの結果,PWLS-MCSTは従来のFBP法やEP正則化を用いたPWLSよりも画像再構成精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-03-22T09:38:41Z) - Multi-layer Residual Sparsifying Transform (MARS) Model for Low-dose CT
Image Reconstruction [12.37556184089774]
教師なしの方法で学習した新しい多層モデルに基づく画像再構成手法を開発した。
提案フレームワークは、画像の古典的スカラー化変換モデルを、Multi-lAyer Residual Sparsifying transform (MARS)モデルに拡張する。
限られた正規線量画像から教師なしの方法で層間変換を学習する効率的なブロック座標降下アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-10-10T09:04:43Z) - Learned Multi-layer Residual Sparsifying Transform Model for Low-dose CT
Reconstruction [11.470070927586017]
スパース変換学習は、高度に効率的なスパースコーディングとオペレータ更新ステップを含む。
本稿では,変換領域残基を層上で共分散したMRST学習モデルを提案する。
論文 参考訳(メタデータ) (2020-05-08T02:36:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。