Time scaling and quantum speed limit in non-Hermitian Hamiltonians
- URL: http://arxiv.org/abs/2106.05155v1
- Date: Wed, 9 Jun 2021 15:56:16 GMT
- Title: Time scaling and quantum speed limit in non-Hermitian Hamiltonians
- Authors: F. Impens, F. M. D'Angelis, F. A. Pinheiro and D. Gu\'ery-Odelin
- Abstract summary: We report on a time scaling technique to enhance the performances of quantum protocols in non-Hermitian systems.
We derive the quantum speed limit in a system governed by a non-Hermitian Hamiltonian.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report on a time scaling technique to enhance the performances of quantum
protocols in non-Hermitian systems. The considered time scaling involves no
extra-couplings and yields a significant enhancement of the quantum fidelity
for a comparable amount of resources. We discuss the application of this
technique to quantum state transfers in 2 and 3-level open quantum systems. We
derive the quantum speed limit in a system governed by a non-Hermitian
Hamiltonian. Interestingly, we show that, with an appropriate driving, the
time-scaling technique preserves the optimality of the quantum speed with
respect to the quantum speed limit while reducing significantly the damping of
the quantum state norm.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Acceleration Limit [0.0]
We prove that the quantum acceleration is upper bounded by the fluctuation in the derivative of the Hamiltonian.
This leads to a universal quantum acceleration limit (QAL) which answers the question: What is the minimum time required for a quantum system to be accelerated.
arXiv Detail & Related papers (2023-12-01T18:45:28Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Exact Quantum Speed Limits [0.0]
We derive exact quantum speed limits for the unitary dynamics of pure-state quantum system.
We estimate the evolution time for two- and higher-dimensional quantum systems.
Results will have a significant impact on our understanding of quantum physics.
arXiv Detail & Related papers (2023-05-05T20:38:54Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Entanglement-assisted quantum speedup: Beating local quantum speed limits [0.0]
Research in quantum information science aims to surpass the scaling limitations of classical information processing.
Speed limits in interacting quantum systems are derived by comparing the rates of change in actual quantum dynamics.
Proposed speed limits provide a tight bound on quantum speed advantage, including a quantum gain that can scale exponentially with the system's size.
arXiv Detail & Related papers (2022-11-27T17:38:57Z) - Generalised quantum speed limit for arbitrary time-continuous evolution [0.0]
We derive a generalised quantum speed limit (GQSL) for arbitrary time-continuous evolution using the geometrical approach of quantum mechanics.
The GQSL is applicable for quantum systems undergoing unitary, non-unitary, completely positive, non-completely positive and relativistic quantum dynamics.
arXiv Detail & Related papers (2022-07-08T21:00:11Z) - Quantum speed limit for the creation and decay of quantum correlations [0.0]
We derive Margolus-Levitin and Mandelstamm-Tamm type bound on the quantum speed limit time for the creation and decay of quantum correlations.
We consider entanglement and quantum discord measures of quantum correlations, quantified using the Bures distance-based measure.
arXiv Detail & Related papers (2022-05-24T08:00:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.