Quantum-like model for unconscious-conscious interaction and emotional
coloring of perceptions and other conscious experiences
- URL: http://arxiv.org/abs/2106.05191v1
- Date: Sun, 6 Jun 2021 17:40:07 GMT
- Title: Quantum-like model for unconscious-conscious interaction and emotional
coloring of perceptions and other conscious experiences
- Authors: Andrei Khrennikov
- Abstract summary: Quantum measurement theory is applied to quantum-like modeling of coherent generation of perceptions and emotions.
In our approach the brain is a macroscopic system which information processing can be described by the formalism of quantum theory.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum measurement theory is applied to quantum-like modeling of coherent
generation of perceptions and emotions and generally for emotional coloring of
conscious experiences. In quantum theory, a system should be separated from an
observer. The brain performs self-measurements. To model them, we split the
brain into two subsystems, unconsciousness and consciousness. They correspond
to a system and an observer. The states of perceptions and emotions are
described through the tensor product decomposition of the unconscious state
space; similarly, there are two classes of observables, for conscious
experiencing of perceptions and emotions, respectively. Emotional coloring is
coupled to quantum contextuality: emotional observables determine contexts.
Such contextualization reduces degeneration of unconscious states. The
quantum-like approach should be distinguished from consideration of the genuine
quantum physical processes in the brain (cf. Penrose and Hameroff). In our
approach the brain is a macroscopic system which information processing can be
described by the formalism of quantum theory.
Related papers
- Are Colors Quanta of Light for Human Vision? A Quantum Cognition Study of Visual Perception [0.0]
We study the phenomenon of categorical perception within the quantum measurement process.
We see perception as a complex encounter between the existing physical reality, the stimuli, and the reality expected by the perciever.
arXiv Detail & Related papers (2024-03-14T21:10:07Z) - Causal potency of consciousness in the physical world [0.0]
An attempt to construct a functional theory of the conscious mind within the framework of classical physics leads to causally impotent conscious experiences.
We show that a mind--brain theory consistent with causally potent conscious experiences is provided by modern quantum physics.
arXiv Detail & Related papers (2023-06-26T13:55:33Z) - Quantum Circuit Components for Cognitive Decision-Making [0.12891210250935145]
This paper demonstrates that some non-classical models of human decision-making can be run successfully as circuits on quantum computers.
The claim is not that the human brain uses qubits and quantum circuits explicitly, but that the mathematics shared between quantum cognition and quantum computing motivates the exploration of quantum computers for cognition modeling.
arXiv Detail & Related papers (2023-02-06T18:52:10Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Memory-Augmented Theory of Mind Network [59.9781556714202]
Social reasoning requires the capacity of theory of mind (ToM) to contextualise and attribute mental states to others.
Recent machine learning approaches to ToM have demonstrated that we can train the observer to read the past and present behaviours of other agents.
We tackle the challenges by equipping the observer with novel neural memory mechanisms to encode, and hierarchical attention to selectively retrieve information about others.
This results in ToMMY, a theory of mind model that learns to reason while making little assumptions about the underlying mental processes.
arXiv Detail & Related papers (2023-01-17T14:48:58Z) - Quantum Structure in Human Perception [0.0]
We investigate the ways in which the quantum structures of superposition, contextuality, and entanglement have their origins in human perception itself.
Our analysis takes us from a simple quantum measurement model, along how human perception incorporates the warping mechanism of categorical perception.
arXiv Detail & Related papers (2022-08-07T13:59:23Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Quantum information theoretic approach to the mind-brain problem [0.0]
In classical physics, addressing the mind-brain problem is a formidable task.
No physical mechanism is able to explain how the brain generates the unobservable, inner psychological world of conscious experiences.
Modern quantum physics affirms the interplay between two types of physical entities in Hilbert space.
arXiv Detail & Related papers (2020-12-13T09:07:33Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.