Entropic Uncertainty Relations and the Quantum-to-Classical transition
- URL: http://arxiv.org/abs/2003.02086v2
- Date: Thu, 18 Jun 2020 22:11:28 GMT
- Title: Entropic Uncertainty Relations and the Quantum-to-Classical transition
- Authors: Isadora Veeren, Fernando de Melo
- Abstract summary: We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our knowledge of quantum mechanics can satisfactorily describe simple,
microscopic systems, but is yet to explain the macroscopic everyday phenomena
we observe. Here we aim to shed some light on the quantum-to-classical
transition as seen through the analysis of uncertainty relations. We employ
entropic uncertainty relations to show that it is only by the inclusion of
imprecision in our model of macroscopic measurements that we can prepare a
system with two simultaneously well-defined quantities, even if their
associated observables do not commute. We also establish how the precision of
measurements must increase in order to keep quantum properties, a desirable
feature for large quantum computers.
Related papers
- Unraveling the Mystery of Quantum Measurement with A New Space-Time Approach to Relativistic Quantum Mechanics [9.116661570248171]
Quantum measurement is a fundamental concept in the field of quantum mechanics.
Despite its significance, four fundamental issues continue to pose significant challenges to the broader application of quantum measurement.
We employ a new space-time approach to relativistic quantum mechanics to address these issues systematically.
arXiv Detail & Related papers (2023-06-01T13:25:08Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - The Montevideo Interpretation: How the inclusion of a Quantum
Gravitational Notion of Time Solves the Measurement Problem [0.0]
We review the Montevideo Interpretation of quantum mechanics, based on the use of real clocks to describe physics.
Recent results on quantum complexity provide additional support to the type of global protocols used to prove that within ordinary -- unitary -- quantum mechanics no definite event occurs.
We show that, if one takes into account fundamental inescapable uncertainties in measuring length and time intervals due to general relativity and quantum mechanics, the previously mentioned global protocols no longer allow to distinguish whether the state is in a superposition or not.
arXiv Detail & Related papers (2020-10-27T18:00:01Z) - Quantum correlations and quantum-memory-assisted entropic uncertainty
relation in a quantum dot system [0.0]
Uncertainty principle is one of the comprehensive and fundamental concept in quantum theory.
We will study the quantum correlation and quantum memory assisted entropic uncertainty in a quantum dot system.
arXiv Detail & Related papers (2020-06-08T05:16:09Z) - Direct observation of deterministic macroscopic entanglement [0.0]
Quantum entanglement of mechanical systems emerges when distinct objects move with such a high degree of correlation that they can no longer be described separately.
Here, using pulsed electromechanics, we deterministically entangle two mechanical drumheads with masses of 70 pg.
arXiv Detail & Related papers (2020-04-12T00:55:33Z) - An optimal measurement strategy to beat the quantum uncertainty in
correlated system [0.6091702876917281]
Uncertainty principle undermines the precise measurement of incompatible observables.
Entanglement, another unique feature of quantum physics, was found may help to reduce the quantum uncertainty.
arXiv Detail & Related papers (2020-02-23T05:27:36Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.