ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs
- URL: http://arxiv.org/abs/2106.05325v1
- Date: Wed, 9 Jun 2021 18:36:41 GMT
- Title: ZoPE: A Fast Optimizer for ReLU Networks with Low-Dimensional Inputs
- Authors: Christopher A. Strong, Sydney M. Katz, Anthony L. Corso, Mykel J.
Kochenderfer
- Abstract summary: We present an algorithm called ZoPE that solves optimization problems over the output of feedforward ReLU networks with low-dimensional inputs.
Using ZoPE, we observe a $25times speedup on property 1 of the ACAS Xu neural network verification benchmark and an $85times speedup on a set of linear optimization problems.
- Score: 30.34898838361206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks often lack the safety and robustness guarantees needed
to be deployed in safety critical systems. Formal verification techniques can
be used to prove input-output safety properties of networks, but when
properties are difficult to specify, we rely on the solution to various
optimization problems. In this work, we present an algorithm called ZoPE that
solves optimization problems over the output of feedforward ReLU networks with
low-dimensional inputs. The algorithm eagerly splits the input space, bounding
the objective using zonotope propagation at each step, and improves
computational efficiency compared to existing mixed integer programming
approaches. We demonstrate how to formulate and solve three types of
optimization problems: (i) minimization of any convex function over the output
space, (ii) minimization of a convex function over the output of two networks
in series with an adversarial perturbation in the layer between them, and (iii)
maximization of the difference in output between two networks. Using ZoPE, we
observe a $25\times$ speedup on property 1 of the ACAS Xu neural network
verification benchmark and an $85\times$ speedup on a set of linear
optimization problems. We demonstrate the versatility of the optimizer in
analyzing networks by projecting onto the range of a generative adversarial
network and visualizing the differences between a compressed and uncompressed
network.
Related papers
- Complexity-Aware Training of Deep Neural Networks for Optimal Structure Discovery [0.0]
We propose a novel algorithm for combined unit/filter and layer pruning of deep neural networks that functions during training and without requiring a pre-trained network to apply.
Our algorithm optimally trades-off learning accuracy and pruning levels while balancing layer vs. unit/filter pruning and computational vs. parameter complexity using only three user-defined parameters.
arXiv Detail & Related papers (2024-11-14T02:00:22Z) - Reverse Engineering Deep ReLU Networks An Optimization-based Algorithm [0.0]
We present a novel method for reconstructing deep ReLU networks by leveraging convex optimization techniques and a sampling-based approach.
Our research contributes to the growing body of work on reverse engineering deep ReLU networks and paves the way for new advancements in neural network interpretability and security.
arXiv Detail & Related papers (2023-12-07T20:15:06Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - CDiNN -Convex Difference Neural Networks [0.8122270502556374]
Neural networks with ReLU activation function have been shown to be universal function approximators learn function mapping as non-smooth functions.
New neural network architecture called ICNNs learn the output as a convex input.
arXiv Detail & Related papers (2021-03-31T17:31:16Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
We prove that finding all globally optimal two-layer ReLU neural networks can be performed by solving a convex optimization program with cone constraints.
Our analysis is novel, characterizes all optimal solutions, and does not leverage duality-based analysis which was recently used to lift neural network training into convex spaces.
arXiv Detail & Related papers (2020-06-10T15:38:30Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Rethinking Differentiable Search for Mixed-Precision Neural Networks [83.55785779504868]
Low-precision networks with weights and activations quantized to low bit-width are widely used to accelerate inference on edge devices.
Current solutions are uniform, using identical bit-width for all filters.
This fails to account for the different sensitivities of different filters and is suboptimal.
Mixed-precision networks address this problem, by tuning the bit-width to individual filter requirements.
arXiv Detail & Related papers (2020-04-13T07:02:23Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.