Reverse Engineering Deep ReLU Networks An Optimization-based Algorithm
- URL: http://arxiv.org/abs/2312.04675v1
- Date: Thu, 7 Dec 2023 20:15:06 GMT
- Title: Reverse Engineering Deep ReLU Networks An Optimization-based Algorithm
- Authors: Mehrab Hamidi
- Abstract summary: We present a novel method for reconstructing deep ReLU networks by leveraging convex optimization techniques and a sampling-based approach.
Our research contributes to the growing body of work on reverse engineering deep ReLU networks and paves the way for new advancements in neural network interpretability and security.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reverse engineering deep ReLU networks is a critical problem in understanding
the complex behavior and interpretability of neural networks. In this research,
we present a novel method for reconstructing deep ReLU networks by leveraging
convex optimization techniques and a sampling-based approach. Our method begins
by sampling points in the input space and querying the black box model to
obtain the corresponding hyperplanes. We then define a convex optimization
problem with carefully chosen constraints and conditions to guarantee its
convexity. The objective function is designed to minimize the discrepancy
between the reconstructed networks output and the target models output, subject
to the constraints. We employ gradient descent to optimize the objective
function, incorporating L1 or L2 regularization as needed to encourage sparse
or smooth solutions. Our research contributes to the growing body of work on
reverse engineering deep ReLU networks and paves the way for new advancements
in neural network interpretability and security.
Related papers
- Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
We show that for a particular choice of mask weights that do not depend on the learning targets, this kernel is equivalent to the NTK of the gated ReLU network on the training data.
A consequence of this lack of dependence on the targets is that the NTK cannot perform better than the optimal MKL kernel on the training set.
arXiv Detail & Related papers (2023-09-26T17:42:52Z) - Large-scale global optimization of ultra-high dimensional non-convex
landscapes based on generative neural networks [0.0]
We present an algorithm manage ultra-high dimensional optimization.
based on a deep generative network.
We show that our method performs better with fewer function evaluations compared to state-of-the-art algorithm.
arXiv Detail & Related papers (2023-07-09T00:05:59Z) - Optimal Sets and Solution Paths of ReLU Networks [56.40911684005949]
We develop an analytical framework to characterize the set of optimal ReLU networks.
We establish conditions for the neuralization of ReLU networks to be continuous, and develop sensitivity results for ReLU networks.
arXiv Detail & Related papers (2023-05-31T18:48:16Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model
Classes and Cone Decompositions [41.337814204665364]
We develop algorithms for convex optimization of two-layer neural networks with ReLU activation functions.
We show that convex gated ReLU models obtain data-dependent approximation bounds for the ReLU training problem.
arXiv Detail & Related papers (2022-02-02T23:50:53Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
arXiv Detail & Related papers (2021-10-18T18:00:36Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
We prove that finding all globally optimal two-layer ReLU neural networks can be performed by solving a convex optimization program with cone constraints.
Our analysis is novel, characterizes all optimal solutions, and does not leverage duality-based analysis which was recently used to lift neural network training into convex spaces.
arXiv Detail & Related papers (2020-06-10T15:38:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.