論文の概要: Input Augmentation Improves Constrained Beam Search for Neural Machine
Translation: NTT at WAT 2021
- arxiv url: http://arxiv.org/abs/2106.05450v1
- Date: Thu, 10 Jun 2021 01:39:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:26:26.855645
- Title: Input Augmentation Improves Constrained Beam Search for Neural Machine
Translation: NTT at WAT 2021
- Title(参考訳): 入力拡張によるニューラルマシン翻訳のための制約ビーム探索の改善:WAT 2021におけるNTT
- Authors: Katsuki Chousa and Makoto Morishita
- Abstract要約: 本稿では,WAT 2021の制限翻訳タスクに送信されたシステムについて述べる。
本システムでは,入力拡張と制約ビーム探索アルゴリズムを組み合わせた。
En->JaとJa->Enは,自動評価において最適評価性能を得た。
- 参考スコア(独自算出の注目度): 2.5780956818382057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes our systems that were submitted to the restricted
translation task at WAT 2021. In this task, the systems are required to output
translated sentences that contain all given word constraints. Our system
combined input augmentation and constrained beam search algorithms. Through
experiments, we found that this combination significantly improves translation
accuracy and can save inference time while containing all the constraints in
the output. For both En->Ja and Ja->En, our systems obtained the best
evaluation performances in automatic evaluation.
- Abstract(参考訳): 本稿では,WAT 2021の制限翻訳タスクに送信されたシステムについて述べる。
このタスクでは、与えられた単語の制約を全て含む翻訳文を出力する必要がある。
本システムでは,入力拡張と制約ビーム探索アルゴリズムを組み合わせた。
実験の結果,この組み合わせによって翻訳精度が大幅に向上し,全ての制約を出力に含めて推論時間を短縮できることがわかった。
en->jaとja->enの両方において,本システムは自動評価において最高の評価性能を得た。
関連論文リスト
- Blending LLMs into Cascaded Speech Translation: KIT's Offline Speech Translation System for IWSLT 2024 [61.189875635090225]
大規模言語モデル (LLM) は現在,自動音声認識 (ASR) や機械翻訳 (MT) ,さらにはエンドツーエンド音声翻訳 (ST) など,さまざまなタスクを探索中である。
論文 参考訳(メタデータ) (2024-06-24T16:38:17Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Prosody in Cascade and Direct Speech-to-Text Translation: a case study
on Korean Wh-Phrases [79.07111754406841]
本研究は,韻律が重要な役割を果たす発話を明瞭にするための直接S2TTシステムの能力を評価するために,コントラスト評価を用いることを提案する。
本結果は,カスケード翻訳モデルよりも直接翻訳システムの価値を明確に示すものである。
論文 参考訳(メタデータ) (2024-02-01T14:46:35Z) - Improving Cascaded Unsupervised Speech Translation with Denoising
Back-translation [70.33052952571884]
我々は,任意のペアデータを活用することなく,カスケード音声翻訳システムを構築することを提案する。
教師なしのシステムをトレーニングし、CoVoST 2 と CVSS で結果を評価するために、完全にペア化されたデータを使用します。
論文 参考訳(メタデータ) (2023-05-12T13:07:51Z) - The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline
Shared Task [92.5087402621697]
本稿では,IWSLT 2022オフラインタスクに対するエンドツーエンドYiTrans音声翻訳システムの提案について述べる。
YiTransシステムは、大規模な訓練済みエンコーダデコーダモデル上に構築されている。
最終提出は自動評価基準でまず英語・ドイツ語・英語・中国語のエンド・ツー・エンド・システムにランク付けする。
論文 参考訳(メタデータ) (2022-06-12T16:13:01Z) - QEMind: Alibaba's Submission to the WMT21 Quality Estimation Shared Task [24.668012925628968]
我々は、WMT 2021 QE共有タスクに提出する。
テキストQEMindというQEシステムを構築するための翻訳の不確実性を評価するために有用な機能をいくつか提案する。
我々は、WMT 2020のダイレクトアセスメントQEタスクにおいて、我々の多言語システムが最高のシステムより優れていることを示す。
論文 参考訳(メタデータ) (2021-12-30T02:27:29Z) - Ensemble Fine-tuned mBERT for Translation Quality Estimation [0.0]
本稿では,WMT 2021 QE共有タスクの提出について論じる。
提案システムは多言語BERT(mBERT)に基づく回帰モデルのアンサンブルである。
ピアソンの相関に匹敵する性能を示し、いくつかの言語対に対してMAE/RMSEのベースラインシステムを破る。
論文 参考訳(メタデータ) (2021-09-08T20:13:06Z) - FST: the FAIR Speech Translation System for the IWSLT21 Multilingual
Shared Task [36.51221186190272]
IWSLT 2021評価キャンペーンに提出したエンドツーエンドの多言語音声翻訳システムについて述べる。
本システムは,モダリティ,タスク,言語間の伝達学習を活用して構築する。
論文 参考訳(メタデータ) (2021-07-14T19:43:44Z) - The Volctrans Neural Speech Translation System for IWSLT 2021 [26.058205594318405]
本稿では,Volctrans チームが IWSLT 2021 に提出したシステムについて述べる。
オフライン音声翻訳では,ベンチマークよりも8.1 BLEUの改善を実現している。
テキスト間同時翻訳では,wait-kモデルを最適化する最善の方法を検討する。
論文 参考訳(メタデータ) (2021-05-16T00:11:59Z) - SJTU-NICT's Supervised and Unsupervised Neural Machine Translation
Systems for the WMT20 News Translation Task [111.91077204077817]
我々は英語・中国語・英語・ポーランド語・ドイツ語・アッパー・ソルビアンという3つの言語対の4つの翻訳指導に参加した。
言語ペアの異なる条件に基づいて、我々は多様なニューラルネットワーク翻訳(NMT)技術の実験を行った。
私たちの提出書では、主要なシステムは英語、中国語、ポーランド語、英語、ドイツ語から上セルビア語への翻訳の道順で第一位を獲得しました。
論文 参考訳(メタデータ) (2020-10-11T00:40:05Z) - ON-TRAC Consortium for End-to-End and Simultaneous Speech Translation
Challenge Tasks at IWSLT 2020 [25.024259342365934]
ON-TRACコンソーシアムは、フランスの3つの学術研究所の研究者で構成されている。
学習したエンドツーエンドのアテンションベースエンコーダデコーダモデルを用いて、オフライン音声翻訳トラックへの提案を行った。
同時音声翻訳トラックでは,テキスト・トゥ・テキスト・サブタスクのための Transformer ベースのwait-k モデルを構築している。
論文 参考訳(メタデータ) (2020-05-24T23:44:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。