論文の概要: Learning to Affiliate: Mutual Centralized Learning for Few-shot
Classification
- arxiv url: http://arxiv.org/abs/2106.05517v1
- Date: Thu, 10 Jun 2021 06:16:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:21:28.173723
- Title: Learning to Affiliate: Mutual Centralized Learning for Few-shot
Classification
- Title(参考訳): アフィリエイトへの学習: ファウショット分類のための相互集中型学習
- Authors: Yang Liu, Weifeng Zhang, Chao Xiang, Tu Zheng, Deng Cai
- Abstract要約: 少ないショット学習は、トレーニング中に見えない新しいタスクに容易に適応できる分類器を学習することを目的としている。
最近の手法では、混合グローバル機能を使う代わりに、局所的な特徴の集合を使って画像を密に表現する傾向がある。
- 参考スコア(独自算出の注目度): 33.19451499073551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning (FSL) aims to learn a classifier that can be easily adapted
to accommodate new tasks not seen during training, given only a few examples.
To handle the limited-data problem in few-shot regimes, recent methods tend to
collectively use a set of local features to densely represent an image instead
of using a mixed global feature. They generally explore a unidirectional
query-to-support paradigm in FSL, e.g., find the nearest/optimal support
feature for each query feature and aggregate these local matches for a joint
classification. In this paper, we propose a new method Mutual Centralized
Learning (MCL) to fully affiliate the two disjoint sets of dense features in a
bidirectional paradigm. We associate each local feature with a particle that
can bidirectionally random walk in a discrete feature space by the
affiliations. To estimate the class probability, we propose the features'
accessibility that measures the expected number of visits to the support
features of that class in a Markov process. We relate our method to learning a
centrality on an affiliation network and demonstrate its capability to be
plugged in existing methods by highlighting centralized local features.
Experiments show that our method achieves the state-of-the-art on both
miniImageNet and tieredImageNet.
- Abstract(参考訳): FSL(Few-shot Learning)は、トレーニング中に見えない新しいタスクに容易に適応できる分類器を学習することを目的としている。
限られたデータの問題を扱うために、最近の手法では、混合グローバル機能を使うのではなく、複数のローカル機能を使って画像を高密度に表現する傾向がある。
彼らは一般的に、FSLにおける一方向のクエリ・ツー・サポートパラダイムを探求し、例えば、各クエリ機能に最も近い/最適なサポート機能を見つけ、これらのローカルマッチを共同分類のために集約する。
本稿では,双方向パラダイムにおいて,密集した2つの集合をアフィリエイトする手法である相互集中学習(mcl)を提案する。
それぞれの局所特徴を, 離散的特徴空間内をアフィリエーションによって双方向にランダムに歩くことのできる粒子と関連付ける。
クラス確率を推定するために,マルコフプロセスにおいて,そのクラスのサポート機能への訪問回数を推定する特徴のアクセシビリティを提案する。
提案手法は,アフィリエイトネットワーク上の集中度を学習し,局所的な特徴を強調することにより既存の手法にプラグインできることを実証する。
実験の結果,本手法は miniImageNet と tieredImageNet の両面において最先端の手法を実現することがわかった。
関連論文リスト
- Siamese Transformer Networks for Few-shot Image Classification [9.55588609556447]
人間は視覚分類タスクにおいて顕著な熟練度を示し、最小限の例で新しい画像を正確に認識し分類する。
既存の少数の画像分類手法は、大域的特徴と局所的特徴の両方を強調し、両者を統合することを考える研究はほとんどない。
我々は,シームズ変圧器ネットワーク(STN)に基づく新しいアプローチを提案する。
我々の戦略は, 複雑な特徴適応モジュールの必要性を回避し, 画像分類におけるグローバルな特徴と局所的な特徴の可能性を効果的に活用する。
論文 参考訳(メタデータ) (2024-07-16T14:27:23Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$は、アルゴリズムに基づくパーソナライズされたフェデレーション学習フレームワークである。
我々は、textitLearn2pFed$が、従来のパーソナライズされたフェデレーション学習方法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-01-16T12:45:15Z) - GBE-MLZSL: A Group Bi-Enhancement Framework for Multi-Label Zero-Shot
Learning [24.075034737719776]
マルチラベルシナリオ(MLZSL)におけるゼロショット学習の課題について検討する。
本稿では、GBE-MLZSLと呼ばれるMLZSLのための新しい効果的なグループバイエンハンスメントフレームワークを提案し、それらの特性を十分に活用し、より正確で堅牢なビジュアル・セマンティック・プロジェクションを実現する。
大規模なMLZSLベンチマークデータセットであるNAS-WIDEとOpen-Images-v4の実験では、提案したGBE-MLZSLが、最先端の手法よりも大きなマージンを持つことを示した。
論文 参考訳(メタデータ) (2023-09-02T12:07:21Z) - Integrative Few-Shot Learning for Classification and Segmentation [37.50821005917126]
少数ショット分類とセグメンテーション(FS-CS)の統合タスクについて紹介する。
FS-CSは、ターゲットクラスがいくつかの例で与えられるとき、クエリイメージでターゲットオブジェクトを分類し、セグメントすることを目的としている。
本稿では,FS-CSのための統合的数ショット学習フレームワークを提案し,学習者がクラスワイドな前景マップを構築するように訓練する。
論文 参考訳(メタデータ) (2022-03-29T16:14:40Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
長尾視覚認識のための分散アライメント戦略を提案する。
次に,二段階学習における一般化された再重み付け法を導入して,事前のクラスバランスをとる。
提案手法は, 4つの認識タスクすべてにおいて, 単純で統一されたフレームワークを用いて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-03-30T14:09:53Z) - Learning Dynamic Alignment via Meta-filter for Few-shot Learning [94.41887992982986]
少ないショット学習は、学習知識を極めて限定的な(サポート)例で適応させることで、新しいクラスを認識することを目的としている。
異なるローカルサポート情報に従って、クエリ領域とチャネルの両方を効果的に強調表示できる動的アライメントを学びます。
結果として得られたフレームワークは、主要な数発の視覚認識ベンチマークに最新技術を確立します。
論文 参考訳(メタデータ) (2021-03-25T03:29:33Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
弱教師付きローカライゼーションは、画像レベルの監督のみを使用して対象対象領域を見つけることを目的としている。
我々は,より正確な物体位置を学習するために,異なる物体間の画素レベルの類似性を活用することを提案する。
ILSVRC検証セット上でトップ1のローカライズ誤差率45.17%を達成する。
論文 参考訳(メタデータ) (2020-08-12T04:14:11Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。