AGGGEN: Ordering and Aggregating while Generating
- URL: http://arxiv.org/abs/2106.05580v1
- Date: Thu, 10 Jun 2021 08:14:59 GMT
- Title: AGGGEN: Ordering and Aggregating while Generating
- Authors: Xinnuo Xu, Ond\v{r}ej Du\v{s}ek, Verena Rieser, Ioannis Konstas
- Abstract summary: We present AGGGEN, a data-to-text model which re-introduces two explicit sentence planning stages into neural data-to-text systems.
AGGGEN performs sentence planning at the same time as generating text by learning latent alignments between input representation and target text.
- Score: 12.845842212733695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present AGGGEN (pronounced 'again'), a data-to-text model which
re-introduces two explicit sentence planning stages into neural data-to-text
systems: input ordering and input aggregation. In contrast to previous work
using sentence planning, our model is still end-to-end: AGGGEN performs
sentence planning at the same time as generating text by learning latent
alignments (via semantic facts) between input representation and target text.
Experiments on the WebNLG and E2E challenge data show that by using fact-based
alignments our approach is more interpretable, expressive, robust to noise, and
easier to control, while retaining the advantages of end-to-end systems in
terms of fluency. Our code is available at https://github.com/XinnuoXu/AggGen.
Related papers
- Enhancing Text Generation in Joint NLG/NLU Learning Through Curriculum Learning, Semi-Supervised Training, and Advanced Optimization Techniques [0.0]
This research paper developed a novel approach to improve text generation in the context of joint Natural Language Generation (NLG) and Natural Language Understanding (NLU) learning.
The data is prepared by gathering and preprocessing annotated datasets, including cleaning, tokenization, stemming, and stop-word removal.
Transformer-based encoders and decoders, capturing long range dependencies and improving source-target sequence modelling.
Reinforcement learning with policy gradient techniques, semi-supervised training, improved attention mechanisms, and differentiable approximations are employed to fine-tune the models and handle complex linguistic tasks effectively.
arXiv Detail & Related papers (2024-10-17T12:43:49Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - Fine-Grained Scene Graph Generation with Data Transfer [127.17675443137064]
Scene graph generation (SGG) aims to extract (subject, predicate, object) triplets in images.
Recent works have made a steady progress on SGG, and provide useful tools for high-level vision and language understanding.
We propose a novel Internal and External Data Transfer (IETrans) method, which can be applied in a play-and-plug fashion and expanded to large SGG with 1,807 predicate classes.
arXiv Detail & Related papers (2022-03-22T12:26:56Z) - Data-to-text Generation with Variational Sequential Planning [74.3955521225497]
We consider the task of data-to-text generation, which aims to create textual output from non-linguistic input.
We propose a neural model enhanced with a planning component responsible for organizing high-level information in a coherent and meaningful way.
We infer latent plans sequentially with a structured variational model, while interleaving the steps of planning and generation.
arXiv Detail & Related papers (2022-02-28T13:17:59Z) - Search and Learn: Improving Semantic Coverage for Data-to-Text
Generation [30.07712039293558]
In this work, we focus on few-shot data-to-text generation.
We propose a search-and-learning approach that leverages pretrained language models but inserts the missing slots to improve semantic coverage.
Experiments show that our model achieves high performance on E2E and WikiBio datasets.
arXiv Detail & Related papers (2021-12-06T03:51:56Z) - Data-to-Text Generation with Iterative Text Editing [3.42658286826597]
We present a novel approach to data-to-text generation based on iterative text editing.
We first transform data items to text using trivial templates, and then we iteratively improve the resulting text by a neural model trained for the sentence fusion task.
The output of the model is filtered by a simple and reranked with an off-the-shelf pre-trained language model.
arXiv Detail & Related papers (2020-11-03T13:32:38Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
We propose using optimal transport (OT) to match the sequences generated in training and testing modes.
An extension is also proposed to improve the OT learning, based on the structural and contextual information of the text sequences.
The effectiveness of the proposed method is validated on machine translation, text summarization, and text generation tasks.
arXiv Detail & Related papers (2020-10-12T19:42:25Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
We present POINTER, a novel insertion-based approach for hard-constrained text generation.
The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner.
The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable.
arXiv Detail & Related papers (2020-05-01T18:11:54Z) - Extractive Summarization as Text Matching [123.09816729675838]
This paper creates a paradigm shift with regard to the way we build neural extractive summarization systems.
We formulate the extractive summarization task as a semantic text matching problem.
We have driven the state-of-the-art extractive result on CNN/DailyMail to a new level (44.41 in ROUGE-1)
arXiv Detail & Related papers (2020-04-19T08:27:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.