Thermal quantum correlations in two gravitational cat states
- URL: http://arxiv.org/abs/2106.05696v3
- Date: Mon, 30 Jan 2023 18:25:44 GMT
- Title: Thermal quantum correlations in two gravitational cat states
- Authors: Moises Rojas and Iarley P. Lobo
- Abstract summary: We consider the effect of a thermal bath on quantum correlations induced by the gravitational interaction in the weak field limit between two massive cat states.
In particular, we observe that thermal fluctuations raise non-entangled quantum correlations when entanglement suddenly drops.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the effect of a thermal bath on quantum correlations induced by
the gravitational interaction in the weak field limit between two massive cat
states, called gravitational cat (gravcat) states. The main goal of this paper
is to provide a good understanding of the effects of temperature and several
parameters in the entanglement (measured by the concurrence) and quantum
coherence (measured by the $l_1$-norm that is defined from the minimal distance
between the quantum state and the set of incoherent states) which are derived
from the thermal quantum density operator. Our results show that the thermal
concurrence and $l_1$-norm can be significantly optimized by increasing the
masses or decreasing the distance between them. We investigate and discuss the
behavior of these quantities under temperature variations in different regimes,
including some that are expected to be experimentally feasible in the future.
In particular, we observe that thermal fluctuations raise non-entangled quantum
correlations when entanglement suddenly drops.
Related papers
- Divergence of thermalization rates driven by the competition between finite temperature and quantum coherence [10.256367888517563]
We observe a divergence of thermalization rates of quantum matters when the temperature approaches zero.
We find that the quantum coherence and bosonic stimulation of superfluid induces the divergence while the finite temperature and the many-body interactions are suppressing the divergence.
arXiv Detail & Related papers (2024-10-30T02:10:29Z) - Exploring the hierarchy of quantum correlations under thermal effects in two gravitational cat states [0.0]
We use concurrence to quantify the entanglement between the two gravitational cat states.
We consider geometric quantum discord to quantify quantum correlations beyond entanglement.
We also show that the temperature influences the degree of quantum correlations between the two gravitational cat states.
arXiv Detail & Related papers (2024-04-30T15:47:29Z) - Quantum correlations under decoherence [0.0]
We examine the evolution of quantum entanglement and a few quantum correlations beyond entanglement, local quantum uncertainty and measurement-induced nonlocality.
The steady state quantum correlations, being independent of the initial state, are found to remain all non-zero for low, finite temperatures.
arXiv Detail & Related papers (2024-02-06T15:44:06Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Energy fluctuation relations and repeated quantum measurements [4.724825031148412]
We discuss the statistical description in non-equilibrium regimes of energy fluctuations originated by the interaction between a quantum system and a measurement apparatus.
To properly quantify the information about energy fluctuations, both the exchanged heat probability density function and the corresponding characteristic function are derived and interpreted.
arXiv Detail & Related papers (2022-02-05T16:20:13Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.