論文の概要: Learnable Hypergraph Laplacian for Hypergraph Learning
- arxiv url: http://arxiv.org/abs/2106.05701v1
- Date: Thu, 10 Jun 2021 12:37:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-12 12:48:23.339750
- Title: Learnable Hypergraph Laplacian for Hypergraph Learning
- Title(参考訳): ハイパーグラフ学習のための学習可能なハイパーグラフラプラシアン
- Authors: Jiying Zhang, Yuzhao Chen, Xi Xiao, Runiu Lu, Shu-Tao Xia
- Abstract要約: HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
我々はHypERgrAph Laplacian aDaptor(HERALD)と呼ばれる適応的なハイパーグラフ構造を構築するための最初の学習ベース手法を提案する。
HERALDは、ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し、タスク認識ハイパーグラフを学習する。
- 参考スコア(独自算出の注目度): 34.28748027233654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their
potential in modeling high-order relations preserved in graph structured data.
However, most existing convolution filters are localized and determined by the
pre-defined initial hypergraph topology, neglecting to explore implicit and
long-ange relations in real-world data. In this paper, we propose the first
learning-based method tailored for constructing adaptive hypergraph structure,
termed HypERgrAph Laplacian aDaptor (HERALD), which serves as a generic
plug-in-play module for improving the representational power of HGCNNs.
Specifically, HERALD adaptively optimizes the adjacency relationship between
hypernodes and hyperedges in an end-to-end manner and thus the task-aware
hypergraph is learned. Furthermore, HERALD employs the self-attention mechanism
to capture the non-local paired-nodes relation. Extensive experiments on
various popular hypergraph datasets for node classification and graph
classification tasks demonstrate that our approach obtains consistent and
considerable performance enhancement, proving its effectiveness and
generalization ability.
- Abstract(参考訳): HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
しかし、既存の畳み込みフィルタの多くは、事前に定義された初期ハイパーグラフトポロジーによって局所化され決定され、実世界データにおける暗黙的および長期的関係の探索を怠る。
本稿では,hgcnnの表現力を向上させる汎用プラグイン・イン・プレイモジュールとして機能する,適応型ハイパーグラフ構造構築のための最初の学習ベース手法であるhypergraph laplacian adaptor(herald)を提案する。
具体的には,ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し,タスク認識ハイパーグラフを学習する。
さらにヘラルドは、非局所的な対ノード関係を捉えるために自己アテンション機構を用いる。
ノード分類とグラフ分類タスクのための多種多様なハイパーグラフデータセットに対する大規模な実験により,本手法が一貫した性能向上を実現し,その有効性と一般化能力を示した。
関連論文リスト
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - Self-Supervised Pretraining for Heterogeneous Hypergraph Neural Networks [9.987252149421982]
異種HyperGNNのための自己教師型事前学習フレームワークを提案する。
本手法は,データ内のエンティティ間の高次関係を,自己教師型で効果的に捉えることができる。
実験の結果,提案するフレームワークは,様々なダウンストリームタスクにおいて,最先端のベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2023-11-19T16:34:56Z) - Learning from Heterogeneity: A Dynamic Learning Framework for Hypergraphs [22.64740740462169]
本稿では,動的ハイパーエッジ構築と注意深い埋め込み更新が可能なLFHというハイパーグラフ学習フレームワークを提案する。
提案手法の有効性を評価するため,いくつかの一般的なデータセットを対象とした総合的な実験を行った。
論文 参考訳(メタデータ) (2023-07-07T06:26:44Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
我々は,新しいアジャケーシテンソルベースのtextbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN) を提案する。
THNNは高次外装機能パッシングメッセージを通じて、忠実なハイパーグラフモデリングフレームワークである。
3次元視覚オブジェクト分類のための2つの広く使われているハイパーグラフデータセットの実験結果から、モデルの有望な性能を示す。
論文 参考訳(メタデータ) (2023-06-05T03:26:06Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
我々は、ハイパーグラフニューラルネットワークの一般化性を改善するために、画像/グラフからの対照的な学習アプローチ(ハイパーGCLと呼ぶ)を適用する。
我々は、高次関係を符号化したハイパーエッジを増大させる2つのスキームを作成し、グラフ構造化データから3つの拡張戦略を採用する。
拡張ビューを生成するためのハイパーグラフ生成モデルを提案し、次に、ハイパーグラフ拡張とモデルパラメータを協調的に学習するエンド・ツー・エンドの微分可能なパイプラインを提案する。
論文 参考訳(メタデータ) (2022-10-07T20:12:20Z) - Equivariant Hypergraph Diffusion Neural Operators [81.32770440890303]
ハイパーグラフを符号化するためにニューラルネットワークを使用するハイパーグラフニューラルネットワーク(HNN)は、データの高次関係をモデル化する有望な方法を提供する。
本研究ではED-HNNと呼ばれる新しいHNNアーキテクチャを提案する。
実世界の9つのハイパーグラフデータセットのノード分類におけるED-HNNの評価を行った。
論文 参考訳(メタデータ) (2022-07-14T06:17:00Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
本稿では,EDVWおよびEIVWハイパーグラフを処理可能な一般学習フレームワークであるGeneral Hypergraph Spectral Convolution(GHSC)を提案する。
本稿では,提案するフレームワークが最先端の性能を達成できることを示す。
ソーシャルネットワーク分析,視覚的客観的分類,タンパク質学習など,様々な分野の実験により,提案手法が最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2022-03-31T10:46:47Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
我々はHypERgrAph Laplacian aDaptor(HERALD)と呼ばれる適応的なハイパーグラフ構造を構築するための最初の学習ベース手法を提案する。
HERALDは、ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し、タスク認識ハイパーグラフを学習する。
論文 参考訳(メタデータ) (2021-06-12T02:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。