A Template-guided Hybrid Pointer Network for
Knowledge-basedTask-oriented Dialogue Systems
- URL: http://arxiv.org/abs/2106.05830v1
- Date: Thu, 10 Jun 2021 15:49:26 GMT
- Title: A Template-guided Hybrid Pointer Network for
Knowledge-basedTask-oriented Dialogue Systems
- Authors: Dingmin Wang, Ziyao Chen, Wanwei He, Li Zhong, Yunzhe Tao, Min Yang
- Abstract summary: We propose a template-guided hybrid pointer network for the knowledge-based task-oriented dialogue system.
We design a memory pointer network model with a gating mechanism to fully exploit the semantic correlation between the retrieved answers and the ground-truth response.
- Score: 15.654119998970499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most existing neural network based task-oriented dialogue systems follow
encoder-decoder paradigm, where the decoder purely depends on the source texts
to generate a sequence of words, usually suffering from instability and poor
readability. Inspired by the traditional template-based generation approaches,
we propose a template-guided hybrid pointer network for the knowledge-based
task-oriented dialogue system, which retrieves several potentially relevant
answers from a pre-constructed domain-specific conversational repository as
guidance answers, and incorporates the guidance answers into both the encoding
and decoding processes. Specifically, we design a memory pointer network model
with a gating mechanism to fully exploit the semantic correlation between the
retrieved answers and the ground-truth response. We evaluate our model on four
widely used task-oriented datasets, including one simulated and three manually
created datasets. The experimental results demonstrate that the proposed model
achieves significantly better performance than the state-of-the-art methods
over different automatic evaluation metrics.
Related papers
- UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems [43.266153244137215]
Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks.
We decompose the use of multiple sources in generating personalized response into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation.
We propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG)
arXiv Detail & Related papers (2024-01-24T06:50:20Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
We propose a novel approach for enhancing contextual recognition within ASR systems via semantic lattice processing.
Our solution consists of using Hidden Markov Models and Gaussian Mixture Models (HMM-GMM) along with Deep Neural Networks (DNN) models for better accuracy.
We demonstrate the effectiveness of our proposed framework on the LibriSpeech dataset with empirical analyses.
arXiv Detail & Related papers (2023-10-14T23:16:05Z) - Retrieval-Generation Alignment for End-to-End Task-Oriented Dialogue
System [40.33178881317882]
We propose the application of maximal marginal likelihood to train a perceptive retriever by utilizing signals from response generation for supervision.
We evaluate our approach on three task-oriented dialogue datasets using T5 and ChatGPT as the backbone models.
arXiv Detail & Related papers (2023-10-13T06:03:47Z) - Diverse and Faithful Knowledge-Grounded Dialogue Generation via
Sequential Posterior Inference [82.28542500317445]
We present an end-to-end learning framework, termed Sequential Posterior Inference (SPI), capable of selecting knowledge and generating dialogues.
Unlike other methods, SPI does not require the inference network or assume a simple geometry of the posterior distribution.
arXiv Detail & Related papers (2023-06-01T21:23:13Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
We propose a novel paradigm that uses a textual interface to align external knowledge and eliminate redundant processes.
We demonstrate our paradigm in practice through MultiWOZ-Remake, including an interactive textual interface built for the MultiWOZ database.
arXiv Detail & Related papers (2023-05-23T05:48:21Z) - Mixtures of Deep Neural Experts for Automated Speech Scoring [11.860560781894458]
The paper copes with the task of automatic assessment of second language proficiency from the language learners' spoken responses to test prompts.
The approach relies on two separate modules: (1) an automatic speech recognition system that yields text transcripts of the spoken interactions involved, and (2) a multiple classifier system based on deep learners that ranks the transcripts into proficiency classes.
arXiv Detail & Related papers (2021-06-23T15:44:50Z) - Keyphrase Extraction with Dynamic Graph Convolutional Networks and
Diversified Inference [50.768682650658384]
Keyphrase extraction (KE) aims to summarize a set of phrases that accurately express a concept or a topic covered in a given document.
Recent Sequence-to-Sequence (Seq2Seq) based generative framework is widely used in KE task, and it has obtained competitive performance on various benchmarks.
In this paper, we propose to adopt the Dynamic Graph Convolutional Networks (DGCN) to solve the above two problems simultaneously.
arXiv Detail & Related papers (2020-10-24T08:11:23Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z) - Diversifying Task-oriented Dialogue Response Generation with Prototype
Guided Paraphrasing [52.71007876803418]
Existing methods for Dialogue Response Generation (DRG) in Task-oriented Dialogue Systems ( TDSs) can be grouped into two categories: template-based and corpus-based.
We propose a prototype-based, paraphrasing neural network, called P2-Net, which aims to enhance quality of the responses in terms of both precision and diversity.
arXiv Detail & Related papers (2020-08-07T22:25:36Z) - A Multi-cascaded Model with Data Augmentation for Enhanced Paraphrase
Detection in Short Texts [1.6758573326215689]
We present a data augmentation strategy and a multi-cascaded model for improved paraphrase detection in short texts.
Our model is both wide and deep and provides greater robustness across clean and noisy short texts.
arXiv Detail & Related papers (2019-12-27T12:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.