Mixtures of Deep Neural Experts for Automated Speech Scoring
- URL: http://arxiv.org/abs/2106.12475v1
- Date: Wed, 23 Jun 2021 15:44:50 GMT
- Title: Mixtures of Deep Neural Experts for Automated Speech Scoring
- Authors: Sara Papi, Edmondo Trentin, Roberto Gretter, Marco Matassoni, Daniele
Falavigna
- Abstract summary: The paper copes with the task of automatic assessment of second language proficiency from the language learners' spoken responses to test prompts.
The approach relies on two separate modules: (1) an automatic speech recognition system that yields text transcripts of the spoken interactions involved, and (2) a multiple classifier system based on deep learners that ranks the transcripts into proficiency classes.
- Score: 11.860560781894458
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The paper copes with the task of automatic assessment of second language
proficiency from the language learners' spoken responses to test prompts. The
task has significant relevance to the field of computer assisted language
learning. The approach presented in the paper relies on two separate modules:
(1) an automatic speech recognition system that yields text transcripts of the
spoken interactions involved, and (2) a multiple classifier system based on
deep learners that ranks the transcripts into proficiency classes. Different
deep neural network architectures (both feed-forward and recurrent) are
specialized over diverse representations of the texts in terms of: a reference
grammar, the outcome of probabilistic language models, several word embeddings,
and two bag-of-word models. Combination of the individual classifiers is
realized either via a probabilistic pseudo-joint model, or via a neural mixture
of experts. Using the data of the third Spoken CALL Shared Task challenge, the
highest values to date were obtained in terms of three popular evaluation
metrics.
Related papers
- Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition [110.8431434620642]
We introduce the generative speech transcription error correction (GenSEC) challenge.
This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition.
We discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations.
arXiv Detail & Related papers (2024-09-15T16:32:49Z) - UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems [43.266153244137215]
Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks.
We decompose the use of multiple sources in generating personalized response into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation.
We propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG)
arXiv Detail & Related papers (2024-01-24T06:50:20Z) - Multi-Modal Classifiers for Open-Vocabulary Object Detection [104.77331131447541]
The goal of this paper is open-vocabulary object detection (OVOD)
We adopt a standard two-stage object detector architecture.
We explore three ways via: language descriptions, image exemplars, or a combination of the two.
arXiv Detail & Related papers (2023-06-08T18:31:56Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains.
Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods.
This review presents approaches for self-supervised speech representation learning and their connection to other research areas.
arXiv Detail & Related papers (2022-05-21T16:52:57Z) - Analysis of Joint Speech-Text Embeddings for Semantic Matching [3.6423306784901235]
We study a joint speech-text embedding space trained for semantic matching by minimizing the distance between paired utterance and transcription inputs.
We extend our method to incorporate automatic speech recognition through both pretraining and multitask scenarios.
arXiv Detail & Related papers (2022-04-04T04:50:32Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
This paper presents our approach to build generalized models for the Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations Challenge of DSTC-10.
We employ extensive data augmentation strategies on written data, including artificial error injection and round-trip text-speech transformation.
Our approach ranks third on the objective evaluation and second on the final official human evaluation.
arXiv Detail & Related papers (2022-03-08T12:26:57Z) - Speaker-Conditioned Hierarchical Modeling for Automated Speech Scoring [60.55025339250815]
We propose a novel deep learning technique for non-native ASS, called speaker-conditioned hierarchical modeling.
We take advantage of the fact that oral proficiency tests rate multiple responses for a candidate. In our technique, we take advantage of the fact that oral proficiency tests rate multiple responses for a candidate. We extract context from these responses and feed them as additional speaker-specific context to our network to score a particular response.
arXiv Detail & Related papers (2021-08-30T07:00:28Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks.
We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way.
arXiv Detail & Related papers (2020-10-26T21:34:39Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
This paper presents a novel solution for multi-turn dialogue modeling, which segments and extracts topic-aware utterances in an unsupervised way.
Our topic-aware modeling is implemented by a newly proposed unsupervised topic-aware segmentation algorithm and Topic-Aware Dual-attention Matching (TADAM) Network.
arXiv Detail & Related papers (2020-09-26T08:43:06Z) - Contextualized Spoken Word Representations from Convolutional
Autoencoders [2.28438857884398]
This paper proposes a Convolutional Autoencoder based neural architecture to model syntactically and semantically adequate contextualized representations of varying length spoken words.
The proposed model was able to demonstrate its robustness when compared to the other two language-based models.
arXiv Detail & Related papers (2020-07-06T16:48:11Z) - Towards Relevance and Sequence Modeling in Language Recognition [39.547398348702025]
We propose a neural network framework utilizing short-sequence information in language recognition.
A new model is proposed for incorporating relevance in language recognition, where parts of speech data are weighted more based on their relevance for the language recognition task.
Experiments are performed using the language recognition task in NIST LRE 2017 Challenge using clean, noisy and multi-speaker speech data.
arXiv Detail & Related papers (2020-04-02T18:31:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.