Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features
- URL: http://arxiv.org/abs/2106.05960v1
- Date: Thu, 10 Jun 2021 17:55:13 GMT
- Title: Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features
- Authors: Thomas M. McDonald, Mauricio A. \'Alvarez
- Abstract summary: We present a novel, domain-agnostic approach to tackling this problem.
We use compositions of physics-informed random features, derived from ordinary differential equations.
We find that our approach achieves comparable performance to a number of other probabilistic models on benchmark regression tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effectively modeling phenomena present in highly nonlinear dynamical systems
whilst also accurately quantifying uncertainty is a challenging task, which
often requires problem-specific techniques. We present a novel, domain-agnostic
approach to tackling this problem, using compositions of physics-informed
random features, derived from ordinary differential equations. The architecture
of our model leverages recent advances in approximate inference for deep
Gaussian processes, such as layer-wise weight-space approximations which allow
us to incorporate random Fourier features, and stochastic variational inference
for approximate Bayesian inference. We provide evidence that our model is
capable of capturing highly nonlinear behaviour in real-world multivariate time
series data. In addition, we find that our approach achieves comparable
performance to a number of other probabilistic models on benchmark regression
tasks.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
We introduce a novel method, DiffHybrid-UQ, for effective and efficient uncertainty propagation and estimation in hybrid neural differentiable models.
Specifically, our approach effectively discerns and quantifies both aleatoric uncertainties, arising from data noise, and epistemic uncertainties, resulting from model-form discrepancies and data sparsity.
arXiv Detail & Related papers (2023-12-30T07:40:47Z) - Deep Latent Force Models: ODE-based Process Convolutions for Bayesian
Deep Learning [0.0]
The deep latent force model (DLFM) is a deep Gaussian process with physics-informed kernels at each layer.
We present empirical evidence of the capability of the DLFM to capture the dynamics present in highly nonlinear real-world time series data.
We find that the DLFM is capable of achieving comparable performance to a range of non-physics-informed probabilistic models.
arXiv Detail & Related papers (2023-11-24T19:55:57Z) - Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
We introduce normalizing flows to re parameterize the ODE vector field, resulting in a data-driven prior distribution.
We also apply normalizing flows to the posterior inference of GP ODEs to resolve the issue of strong mean-field assumptions.
We validate the effectiveness of our approach on simulated dynamical systems and real-world human motion data.
arXiv Detail & Related papers (2023-09-17T09:28:47Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Approximate Latent Force Model Inference [1.3927943269211591]
latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems.
We show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation.
arXiv Detail & Related papers (2021-09-24T09:55:00Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.