A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors
- URL: http://arxiv.org/abs/2111.13329v2
- Date: Mon, 29 Nov 2021 02:44:07 GMT
- Title: A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors
- Authors: Shiv Agrawal, Hwanwoo Kim, Daniel Sanz-Alonso, and Alexander Strang
- Abstract summary: This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
- Score: 60.489902135153415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hierarchical models with gamma hyperpriors provide a flexible,
sparse-promoting framework to bridge $L^1$ and $L^2$ regularizations in
Bayesian formulations to inverse problems. Despite the Bayesian motivation for
these models, existing methodologies are limited to \textit{maximum a
posteriori} estimation. The potential to perform uncertainty quantification has
not yet been realized. This paper introduces a variational iterative
alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction,
provides meaningful uncertainty quantification, and is easy to implement. In
addition, it lends itself naturally to conduct model selection for the choice
of hyperparameters. We illustrate the performance of our methodology in several
computed examples, including a deconvolution problem and sparse identification
of dynamical systems from time series data.
Related papers
- Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
We propose a novel framework for the modeling of heteroscedastic covariance functions.
We employ variational inference to approximate the posterior and facilitate posterior predictive modeling.
We show that our proposed framework offers a robust and versatile tool for a wide array of applications.
arXiv Detail & Related papers (2023-08-29T15:06:47Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - Quasi Black-Box Variational Inference with Natural Gradients for
Bayesian Learning [84.90242084523565]
We develop an optimization algorithm suitable for Bayesian learning in complex models.
Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations.
arXiv Detail & Related papers (2022-05-23T18:54:27Z) - Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features [0.0]
We present a novel, domain-agnostic approach to tackling this problem.
We use compositions of physics-informed random features, derived from ordinary differential equations.
We find that our approach achieves comparable performance to a number of other probabilistic models on benchmark regression tasks.
arXiv Detail & Related papers (2021-06-10T17:55:13Z) - A variational inference framework for inverse problems [0.39373541926236766]
A framework is presented for fitting inverse problem models via variational Bayes approximations.
This methodology guarantees flexibility to statistical model specification for a broad range of applications.
An image processing application and a simulation exercise motivated by biomedical problems reveal the computational advantage offered by variational Bayes.
arXiv Detail & Related papers (2021-03-10T07:37:20Z) - Variational Nonlinear System Identification [0.8793721044482611]
This paper considers parameter estimation for nonlinear state-space models, which is an important but challenging problem.
We employ a variational inference (VI) approach, which is a principled method that has deep connections to maximum likelihood estimation.
This VI approach ultimately provides estimates of the model as solutions to an optimisation problem, which is deterministic, tractable and can be solved using standard optimisation tools.
arXiv Detail & Related papers (2020-12-08T05:43:50Z) - Estimation of Switched Markov Polynomial NARX models [75.91002178647165]
We identify a class of models for hybrid dynamical systems characterized by nonlinear autoregressive (NARX) components.
The proposed approach is demonstrated on a SMNARX problem composed by three nonlinear sub-models with specific regressors.
arXiv Detail & Related papers (2020-09-29T15:00:47Z) - Uncertainty Modelling in Risk-averse Supply Chain Systems Using
Multi-objective Pareto Optimization [0.0]
One of the arduous tasks in supply chain modelling is to build robust models against irregular variations.
We have introduced a novel methodology namely, Pareto Optimization to handle uncertainties and bound the entropy of such uncertainties by explicitly modelling them under some apriori assumptions.
arXiv Detail & Related papers (2020-04-24T21:04:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.