Coordinate Independent Convolutional Networks -- Isometry and Gauge
Equivariant Convolutions on Riemannian Manifolds
- URL: http://arxiv.org/abs/2106.06020v1
- Date: Thu, 10 Jun 2021 19:54:19 GMT
- Title: Coordinate Independent Convolutional Networks -- Isometry and Gauge
Equivariant Convolutions on Riemannian Manifolds
- Authors: Maurice Weiler, Patrick Forr\'e, Erik Verlinde, Max Welling
- Abstract summary: A major complication in comparison to flat spaces is that it is unclear in which alignment a convolution kernel should be applied on a manifold.
We argue that the particular choice of coordinatization should not affect a network's inference -- it should be coordinate independent.
A simultaneous demand for coordinate independence and weight sharing is shown to result in a requirement on the network to be equivariant.
- Score: 70.32518963244466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the vast success of deep convolutional networks, there is a
great interest in generalizing convolutions to non-Euclidean manifolds. A major
complication in comparison to flat spaces is that it is unclear in which
alignment a convolution kernel should be applied on a manifold. The underlying
reason for this ambiguity is that general manifolds do not come with a
canonical choice of reference frames (gauge). Kernels and features therefore
have to be expressed relative to arbitrary coordinates. We argue that the
particular choice of coordinatization should not affect a network's inference
-- it should be coordinate independent. A simultaneous demand for coordinate
independence and weight sharing is shown to result in a requirement on the
network to be equivariant under local gauge transformations (changes of local
reference frames). The ambiguity of reference frames depends thereby on the
G-structure of the manifold, such that the necessary level of gauge
equivariance is prescribed by the corresponding structure group G. Coordinate
independent convolutions are proven to be equivariant w.r.t. those isometries
that are symmetries of the G-structure. The resulting theory is formulated in a
coordinate free fashion in terms of fiber bundles. To exemplify the design of
coordinate independent convolutions, we implement a convolutional network on
the M\"obius strip. The generality of our differential geometric formulation of
convolutional networks is demonstrated by an extensive literature review which
explains a large number of Euclidean CNNs, spherical CNNs and CNNs on general
surfaces as specific instances of coordinate independent convolutions.
Related papers
- Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - Metric Convolutions: A Unifying Theory to Adaptive Convolutions [3.481985817302898]
Metric convolutions replace standard convolutions in image processing and deep learning.
They require fewer parameters and provide better generalisation.
Our approach shows competitive performance in standard denoising and classification tasks.
arXiv Detail & Related papers (2024-06-08T08:41:12Z) - Tensor Frames -- How To Make Any Message Passing Network Equivariant [15.687514300950813]
We present a novel framework for building equivariant message passing architectures.
We produce state-of-the-art results on normal vector regression on point clouds.
arXiv Detail & Related papers (2024-05-24T09:41:06Z) - A Characterization Theorem for Equivariant Networks with Point-wise
Activations [13.00676132572457]
We prove that rotation-equivariant networks can only be invariant, as it happens for any network which is equivariant with respect to connected compact groups.
We show that feature spaces of disentangled steerable convolutional neural networks are trivial representations.
arXiv Detail & Related papers (2024-01-17T14:30:46Z) - A Geometric Insight into Equivariant Message Passing Neural Networks on
Riemannian Manifolds [1.0878040851638]
We argue that the metric attached to a coordinate-independent feature field should optimally preserve the principal bundle's original metric.
We obtain a message passing scheme on the manifold by discretizing the diffusion equation flow for a fixed time step.
The discretization of the higher-order diffusion process on a graph yields a new general class of equivariant GNN.
arXiv Detail & Related papers (2023-10-16T14:31:13Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning [90.20563679417567]
This paper introduces MDP homomorphic networks for deep reinforcement learning.
MDP homomorphic networks are neural networks that are equivariant under symmetries in the joint state-action space of an MDP.
We show that such networks converge faster than unstructured networks on CartPole, a grid world and Pong.
arXiv Detail & Related papers (2020-06-30T15:38:37Z) - Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
graphs [81.12344211998635]
A common approach to define convolutions on meshes is to interpret them as a graph and apply graph convolutional networks (GCNs)
We propose Gauge Equivariant Mesh CNNs which generalize GCNs to apply anisotropic gauge equivariant kernels.
Our experiments validate the significantly improved expressivity of the proposed model over conventional GCNs and other methods.
arXiv Detail & Related papers (2020-03-11T17:21:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.