Information Theoretic Evaluation of Privacy-Leakage, Interpretability,
and Transferability for a Novel Trustworthy AI Framework
- URL: http://arxiv.org/abs/2106.06046v2
- Date: Mon, 14 Jun 2021 05:11:58 GMT
- Title: Information Theoretic Evaluation of Privacy-Leakage, Interpretability,
and Transferability for a Novel Trustworthy AI Framework
- Authors: Mohit Kumar, Bernhard A. Moser, Lukas Fischer, Bernhard Freudenthaler
- Abstract summary: Guidelines and principles of trustworthy AI should be adhered to in practice during the development of AI systems.
This work suggests a novel information theoretic trustworthy AI framework based on the hypothesis that information theory enables taking into account the ethical AI principles.
- Score: 11.764605963190817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Guidelines and principles of trustworthy AI should be adhered to in practice
during the development of AI systems. This work suggests a novel information
theoretic trustworthy AI framework based on the hypothesis that information
theory enables taking into account the ethical AI principles during the
development of machine learning and deep learning models via providing a way to
study and optimize the inherent tradeoffs between trustworthy AI principles. A
unified approach to "privacy-preserving interpretable and transferable
learning" is presented via introducing the information theoretic measures for
privacy-leakage, interpretability, and transferability. A technique based on
variational optimization, employing conditionally deep autoencoders, is
developed for practically calculating the defined information theoretic
measures for privacy-leakage, interpretability, and transferability.
Related papers
- Advancing Personalized Federated Learning: Integrative Approaches with AI for Enhanced Privacy and Customization [0.0]
This paper proposes a novel approach that enhances PFL with cutting-edge AI techniques.
We present a model that boosts the performance of individual client models and ensures robust privacy-preserving mechanisms.
This work paves the way for a new era of truly personalized and privacy-conscious AI systems.
arXiv Detail & Related papers (2025-01-30T07:03:29Z) - Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
The chapter emphasizes that creating trustworthy AI systems in healthcare requires careful consideration of fairness, explainability, and privacy.
The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models.
The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations.
arXiv Detail & Related papers (2025-01-16T16:17:39Z) - Trust the Process: Zero-Knowledge Machine Learning to Enhance Trust in
Generative AI Interactions [1.3688201404977818]
It explores using cryptographic techniques, particularly Zero-Knowledge Proofs (ZKPs), to address concerns regarding performance fairness and accuracy.
Applying ZKPs to Machine Learning models, known as ZKML (Zero-Knowledge Machine Learning), enables independent validation of AI-generated content.
We introduce snarkGPT, a practical ZKML implementation for transformers, to empower users to verify output accuracy and quality while preserving model privacy.
arXiv Detail & Related papers (2024-02-09T14:00:16Z) - Trustworthy Distributed AI Systems: Robustness, Privacy, and Governance [14.941040909919327]
Distributed AI systems are revolutionizing big data computing and data processing capabilities with growing economic and societal impact.
Recent studies have identified new attack surfaces and risks caused by security, privacy, and fairness issues in AI systems.
We review representative techniques, algorithms, and theoretical foundations for trustworthy distributed AI.
arXiv Detail & Related papers (2024-02-02T01:58:58Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
We derive a framework to analyze whether a transparent implementation in a computing model is feasible.
Based on previous results, we find that Blum-Shub-Smale Machines have the potential to establish trustworthy solvers for inverse problems.
arXiv Detail & Related papers (2024-01-18T15:32:38Z) - Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics [0.0]
We develop six distinct model-agnostic metrics designed to quantify the extent to which model predictions can be explained.
These metrics measure different aspects of model explainability, ranging from local importance, global importance, and surrogate predictions.
We demonstrate the practical utility of these metrics on classification and regression tasks, and integrate these metrics into an existing Python package for public use.
arXiv Detail & Related papers (2023-02-23T15:28:36Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
We draw from communication theories and literature on trust in technologies to develop a conceptual model called MATCH.
We highlight transparency and interaction as AI systems' affordances that present a wide range of trustworthiness cues to users.
We propose a checklist of requirements to help technology creators identify appropriate cues to use.
arXiv Detail & Related papers (2022-04-29T00:14:33Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.