HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions
- URL: http://arxiv.org/abs/2106.06167v1
- Date: Fri, 11 Jun 2021 04:57:03 GMT
- Title: HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions
- Authors: Liwei Deng, Xuanhao Chen, Yan Zhao, and Kai Zheng
- Abstract summary: HIFI builds multivariate feature interaction graph automatically and uses the graph convolutional neural network to achieve high-order feature interactions.
Experiments on three publicly available datasets demonstrate the superiority of our framework compared with state-of-the-art approaches.
- Score: 7.016615391171876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring complex systems results in massive multivariate time series data,
and anomaly detection of these data is very important to maintain the normal
operation of the systems. Despite the recent emergence of a large number of
anomaly detection algorithms for multivariate time series, most of them ignore
the correlation modeling among multivariate, which can often lead to poor
anomaly detection results. In this work, we propose a novel anomaly detection
model for multivariate time series with \underline{HI}gh-order
\underline{F}eature \underline{I}nteractions (HIFI). More specifically, HIFI
builds multivariate feature interaction graph automatically and uses the graph
convolutional neural network to achieve high-order feature interactions, in
which the long-term temporal dependencies are modeled by attention mechanisms
and a variational encoding technique is utilized to improve the model
performance and robustness. Extensive experiments on three publicly available
datasets demonstrate the superiority of our framework compared with
state-of-the-art approaches.
Related papers
- Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection [8.878898677348086]
Multi-dimensional time series anomaly detection technology plays an important role in many fields including aerospace, water treatment, cloud service providers, etc.
It is becoming increasingly challenging to perform effective and accurate anomaly detection in high-dimensional and complex data sets.
We propose a hypergraph basedtemporal graph convolutional network model STGCN_Hyper, which explicitly captures high-order, multi-hop correlations between multiple variables.
Our model can flexibly learn the multi-scale time series features in the data and the dependencies between features, and outperforms most existing baseline models in terms of precision, recall, F1-score on anomaly detection
arXiv Detail & Related papers (2024-10-29T17:19:18Z) - Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
We introduce a combination of data augmentation and soft contrastive learning, specifically designed to capture the multifaceted nature of state behaviors more accurately.
This dual strategy significantly boosts the model's ability to distinguish between normal and abnormal states, leading to a marked improvement in fault detection performance across multiple datasets and settings.
arXiv Detail & Related papers (2024-05-25T14:48:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Entropy Causal Graphs for Multivariate Time Series Anomaly Detection [7.402342914903391]
This work proposes a novel framework called CGAD, an entropy Causal Graph for multivariate time series Anomaly Detection.
CGAD utilizes transfer entropy to construct graph structures that unveil the underlying causal relationships among time series data.
CGAD outperforms state-of-the-art methods on real-world datasets with a 15% average improvement.
arXiv Detail & Related papers (2023-12-15T01:35:00Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Coupled Attention Networks for Multivariate Time Series Anomaly
Detection [10.620044922371177]
We propose a coupled attention-based neural network framework (CAN) for anomaly detection in multivariate time series data.
To capture inter-sensor relationships and temporal dependencies, a convolutional neural network based on the global-local graph is integrated with a temporal self-attention module.
arXiv Detail & Related papers (2023-06-12T13:42:56Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.