Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection
- URL: http://arxiv.org/abs/2410.22256v1
- Date: Tue, 29 Oct 2024 17:19:18 GMT
- Title: Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection
- Authors: Hongyi Xu,
- Abstract summary: Multi-dimensional time series anomaly detection technology plays an important role in many fields including aerospace, water treatment, cloud service providers, etc.
It is becoming increasingly challenging to perform effective and accurate anomaly detection in high-dimensional and complex data sets.
We propose a hypergraph basedtemporal graph convolutional network model STGCN_Hyper, which explicitly captures high-order, multi-hop correlations between multiple variables.
Our model can flexibly learn the multi-scale time series features in the data and the dependencies between features, and outperforms most existing baseline models in terms of precision, recall, F1-score on anomaly detection
- Score: 8.878898677348086
- License:
- Abstract: Multivariate time series anomaly detection technology plays an important role in many fields including aerospace, water treatment, cloud service providers, etc. Excellent anomaly detection models can greatly improve work efficiency and avoid major economic losses. However, with the development of technology, the increasing size and complexity of data, and the lack of labels for relevant abnormal data, it is becoming increasingly challenging to perform effective and accurate anomaly detection in high-dimensional and complex data sets. In this paper, we propose a hypergraph based spatiotemporal graph convolutional neural network model STGCN_Hyper, which explicitly captures high-order, multi-hop correlations between multiple variables through a hypergraph based dynamic graph structure learning module. On this basis, we further use the hypergraph based spatiotemporal graph convolutional network to utilize the learned hypergraph structure to effectively propagate and aggregate one-hop and multi-hop related node information in the convolutional network, thereby obtaining rich spatial information. Furthermore, through the multi-scale TCN dilated convolution module, the STGCN_hyper model can also capture the dependencies of features at different scales in the temporal dimension. An unsupervised anomaly detector based on PCA and GMM is also integrated into the STGCN_hyper model. Through the anomaly score of the detector, the model can detect the anomalies in an unsupervised way. Experimental results on multiple time series datasets show that our model can flexibly learn the multi-scale time series features in the data and the dependencies between features, and outperforms most existing baseline models in terms of precision, recall, F1-score on anomaly detection tasks. Our code is available on: https://git.ecdf.ed.ac.uk/msc-23-24/s2044819
Related papers
- Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - HFN: Heterogeneous Feature Network for Multivariate Time Series Anomaly
Detection [2.253268952202213]
We propose a novel semi-supervised anomaly detection framework based on a heterogeneous feature network (HFN) for MTS.
We first combine the embedding similarity subgraph generated by sensor embedding and feature value similarity subgraph generated by sensor values to construct a time-series heterogeneous graph.
This approach fuses the state-of-the-art technologies of heterogeneous graph structure learning (HGSL) and representation learning.
arXiv Detail & Related papers (2022-11-01T05:01:34Z) - HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions [7.016615391171876]
HIFI builds multivariate feature interaction graph automatically and uses the graph convolutional neural network to achieve high-order feature interactions.
Experiments on three publicly available datasets demonstrate the superiority of our framework compared with state-of-the-art approaches.
arXiv Detail & Related papers (2021-06-11T04:57:03Z) - Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT [11.480824844205864]
This work proposed a novel framework, namely GTA, for multivariate time series anomaly detection by automatically learning a graph structure followed by the graph convolution.
We also devised a novel graph convolution named Influence propagation convolution to model the anomaly information flow between graph nodes.
The experiments on four public anomaly detection benchmarks further demonstrate our approach's superiority over other state-of-the-arts.
arXiv Detail & Related papers (2021-04-08T01:45:28Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
We propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data.
By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly.
arXiv Detail & Related papers (2021-03-27T04:47:59Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.