論文の概要: Competition on Dynamic Optimization Problems Generated by Generalized Moving Peaks Benchmark (GMPB)
- arxiv url: http://arxiv.org/abs/2106.06174v4
- Date: Tue, 10 Dec 2024 06:04:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:34:34.050013
- Title: Competition on Dynamic Optimization Problems Generated by Generalized Moving Peaks Benchmark (GMPB)
- Title(参考訳): 一般化ピークベンチマーク(GMPB)による動的最適化問題の競合
- Authors: Danial Yazdani, Michalis Mavrovouniotis, Changhe Li, Guoyu Chen, Wenjian Luo, Mohammad Nabi Omidvar, Juergen Branke, Shengxiang Yang, Xin Yao,
- Abstract要約: Generalized moving Peaks Benchmark (GMPB)は、継続的動的最適化問題インスタンスを生成するツールである。
GMPBは、最近のコンペティション・オン・ダイナミック・オプティマイションのコンペティションで使われてきた。
- 参考スコア(独自算出の注目度): 5.759341033876751
- License:
- Abstract: The Generalized Moving Peaks Benchmark (GMPB) is a tool for generating continuous dynamic optimization problem instances with controllable dynamic and morphological characteristics. GMPB has been used in recent Competitions on Dynamic Optimization at prestigious conferences, such as the IEEE Congress on Evolutionary Computation (CEC). This dynamic benchmark generator can create a wide variety of landscapes, ranging from simple unimodal to highly complex multimodal configurations and from symmetric to asymmetric forms. It also supports diverse surface textures, from smooth to highly irregular, and can generate varying levels of variable interaction and conditioning. This document provides an overview of GMPB, emphasizing how its parameters can be adjusted to produce landscapes with customizable characteristics. The MATLAB implementation of GMPB is available on the EDOLAB Platform.
- Abstract(参考訳): Generalized Moving Peaks Benchmark (GMPB) は、制御可能な動的および形態的特性を持つ連続動的最適化問題インスタンスを生成するツールである。
GMPBは近年、IEEE Congress on Evolutionary Computation (CEC)のような名高いカンファレンスで、動的最適化に関するコンペティションで使用されている。
この動的ベンチマークジェネレータは、単純な単調から非常に複雑なマルチモーダル構成、対称から非対称形式まで、様々な風景を作成できる。
また、スムーズから非常に不規則な表面テクスチャもサポートしており、様々なレベルの相互作用や条件付けを生成することができる。
この文書はGMPBの概要を提供し、そのパラメータをどのように調整して、カスタマイズ可能な特徴を持つ景観を作り出すかを強調している。
GMPBのMATLAB実装はEDOLABプラットフォームで利用可能である。
関連論文リスト
- Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback [64.67540769692074]
人間のフィードバックからの強化学習など、アライメント技術で微調整された大規模言語モデル(LLM)は、これまでで最も有能なAIシステムの開発に役立っている。
マージンマッチング選好最適化(MMPO)と呼ばれる手法を導入し、相対的な品質マージンを最適化し、LLMポリシーと報酬モデルを改善する。
人間とAIの両方のフィードバックデータによる実験によると、MMPOはMT-benchやRewardBenchといった一般的なベンチマークにおいて、ベースラインメソッドよりも一貫してパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-10-04T04:56:11Z) - Generalized Preference Optimization: A Unified Approach to Offline Alignment [54.97015778517253]
本稿では,一般的な凸関数のクラスによってパラメータ化されるオフライン損失の族である一般化された選好最適化(GPO)を提案する。
GPOは、DPO、IPO、SLiCといった既存のアルゴリズムを特別なケースとして含む、優先最適化に関する統一的なビューを可能にする。
本研究は,新たなアルゴリズムツールキットと経験的洞察を実践者のアライメントに提示する。
論文 参考訳(メタデータ) (2024-02-08T15:33:09Z) - 360 Layout Estimation via Orthogonal Planes Disentanglement and Multi-view Geometric Consistency Perception [56.84921040837699]
既存のパノラマ配置推定ソリューションは、垂直圧縮されたシーケンスから部屋の境界を復元し、不正確な結果をもたらす傾向にある。
そこで本稿では,直交平面不整合ネットワーク(DOPNet)を提案し,あいまいな意味論を識別する。
また,水平深度と比表現に適した教師なし適応手法を提案する。
本手法は,単分子配置推定と多視点レイアウト推定の両タスクにおいて,他のSoTAモデルよりも優れる。
論文 参考訳(メタデータ) (2023-12-26T12:16:03Z) - Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model [81.55141188169621]
PEFTにクロスブロックオーケストレーション機構を組み、SAM(Segment Anything Model)の様々な下流シナリオへの適応を可能にする。
本稿では,超複素層から重みが生じる線形射影ヘッドを導入するブロック内拡張モジュールを提案する。
提案手法は,約1Kのパラメータのみを付加した新規シナリオにおいて,セグメンテーション性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-28T11:23:34Z) - Global Optimization: A Machine Learning Approach [7.052596485478637]
Bertsimas と Ozturk (2023) は、ブラックボックスのグローバル最適化問題を解決する方法として OCTHaGOn を提案した。
我々は、他のMIO表現可能なMLモデルを用いて、元の問題を近似することで、このアプローチの拡張を提供する。
多くの場合において、ソリューションの実現可能性と最適性の改善を示す。
論文 参考訳(メタデータ) (2023-11-03T06:33:38Z) - SIGMA: Scale-Invariant Global Sparse Shape Matching [50.385414715675076]
非剛体形状の正確なスパース対応を生成するための新しい混合整数プログラミング(MIP)法を提案する。
いくつかの挑戦的な3Dデータセットに対して,スパースな非剛性マッチングの最先端結果を示す。
論文 参考訳(メタデータ) (2023-08-16T14:25:30Z) - MA-BBOB: Many-Affine Combinations of BBOB Functions for Evaluating
AutoML Approaches in Noiseless Numerical Black-Box Optimization Contexts [0.8258451067861933]
(MA-)BBOBは、一般公開のIOHファウンサープラットフォーム上に構築されている。
パフォーマンス分析と視覚化のためのインタラクティブなIOHanalyzerモジュールへのアクセスを提供し、(MA-)BBOB関数で利用可能なリッチで成長中のデータコレクションとの比較を可能にする。
論文 参考訳(メタデータ) (2023-06-18T19:32:12Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
深層生成モデルは、生命科学における逆問題に対する一般的な機械学習ベースのアプローチとして登場した。
これらの問題は、データ分布の学習に加えて、興味のある複数の特性を満たす新しい設計をサンプリングする必要があることが多い。
論文 参考訳(メタデータ) (2022-10-19T19:04:45Z) - Hybrid Parameter Search and Dynamic Model Selection for Mixed-Variable
Bayesian Optimization [6.204805504959941]
混合変数の管理に有効なベイズ最適化(BO)のための新しいタイプのハイブリッドモデルを提案する。
提案手法は,モンテカルロ木探索構造 (MCTS) とガウス過程 (GP) を融合したハイブリッドモデルである。
代理モデリングフェーズにおける動的オンラインカーネル選択を含む我々のイノベーションは、ハイブリッドモデルを混合可変代理モデルの進歩として位置づけている。
論文 参考訳(メタデータ) (2022-06-03T06:34:09Z) - Explicitly Multi-Modal Benchmarks for Multi-Objective Optimization [1.9282110216621833]
本研究では,アトラクションの流域を用いて,流域接続性(3BC)に基づくベンチマークを導入する。
3BCは、盆地グラフと呼ばれるトポロジ解析によって、マルチモーダルランドスケープの仕様化を可能にする。
論文 参考訳(メタデータ) (2021-10-07T05:51:32Z) - Generating Large-scale Dynamic Optimization Problem Instances Using the
Generalized Moving Peaks Benchmark [9.109331015600185]
本論文では, 一般化移動ピークベンチマーク(GMPB)と, 連続的な大規模動的最適化問題に対する問題インスタンスの生成方法について述べる。
15のベンチマーク問題、関連するソースコード、および大規模動的最適化における比較研究と競合のために設計されたパフォーマンス指標を提示する。
論文 参考訳(メタデータ) (2021-07-23T03:57:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。