論文の概要: Visualization Techniques to Enhance Automated Event Extraction
- arxiv url: http://arxiv.org/abs/2106.06588v1
- Date: Fri, 11 Jun 2021 19:24:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-20 03:38:01.778556
- Title: Visualization Techniques to Enhance Automated Event Extraction
- Title(参考訳): 自動イベント抽出のための可視化技術
- Authors: Sophia Henn, Abigail Sticha, Timothy Burley, Ernesto Verdeja, Paul
Brenner
- Abstract要約: このケーススタディでは,NLPを用いたニュース記事から,国家主導による大量殺人の潜在的な引き金を探究する。
可視化は、生データの探索分析から機械学習トレーニング分析、最後に推論後の検証に至るまで、各段階でどのように役立つかを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robust visualization of complex data is critical for the effective use of NLP
for event classification, as the volume of data is large and the
high-dimensional structure of text makes data challenging to summarize
succinctly. In event extraction tasks in particular, visualization can aid in
understanding and illustrating the textual relationships from which machine
learning tools produce insights. Through our case study which seeks to identify
potential triggers of state-led mass killings from news articles using NLP, we
demonstrate how visualizations can aid in each stage, from exploratory analysis
of raw data, to machine learning training analysis, and finally post-inference
validation.
- Abstract(参考訳): 複雑なデータのロバストな可視化は、データのボリュームが大きく、テキストの高次元構造が簡潔に要約することを困難にするため、イベント分類にNLPを効果的に利用する上で重要である。
特にイベント抽出タスクにおいて、可視化は、機械学習ツールが洞察を生み出すテキスト関係の理解と説明に役立つ。
本稿では,NLPを用いたニュース記事から州主導の大量殺人の潜在的引き金を探るケーススタディを通じて,生データの探索的分析から機械学習学習分析,最後に推論後の検証に至るまで,各段階で可視化がどのように役立つかを実証する。
関連論文リスト
- "Show Me What's Wrong!": Combining Charts and Text to Guide Data Analysis [4.016592757754338]
金融詐欺検出の文脈では、アナリストは取引データの中で不審な活動を素早く特定する必要がある。
これは、パターンの認識、グループ化、比較といった複雑な探索的なタスクからなる反復的なプロセスである。
これらのステップに固有の情報の過負荷を軽減するため、自動化された情報ハイライト、大規模言語モデルが生成するテキストインサイト、視覚分析を組み合わせたツールを提案する。
論文 参考訳(メタデータ) (2024-10-01T14:16:10Z) - Towards Unified Multi-granularity Text Detection with Interactive Attention [56.79437272168507]
Detect Any Text"は、シーンテキストの検出、レイアウト分析、ドキュメントページの検出を結合的なエンドツーエンドモデルに統合する高度なパラダイムである。
DATにおける重要なイノベーションは、テキストインスタンスの表現学習を大幅に強化する、粒度横断型アテンションモジュールである。
テストによると、DATは様々なテキスト関連ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-05-30T07:25:23Z) - Explainable Attention for Few-shot Learning and Beyond [7.044125601403848]
本稿では,説明可能な難易度発見,特に数発の学習シナリオに適した新しいフレームワークを提案する。
提案手法では、深層強化学習を用いて、生の入力データに直接影響するハードアテンションの概念を実装している。
論文 参考訳(メタデータ) (2023-10-11T18:33:17Z) - Boosting Event Extraction with Denoised Structure-to-Text Augmentation [52.21703002404442]
イベント抽出は、テキストから事前に定義されたイベントトリガと引数を認識することを目的としている。
最近のデータ拡張手法は文法的誤りの問題を無視することが多い。
本稿では,イベント抽出DAEEのための記述構造からテキストへの拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-16T16:52:07Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
本稿では,データ探索プロセスの簡略化を目的とした自動データ探索システムであるInsightPilotを紹介する。
InsightPilotは、理解、要約、説明などの適切な分析意図を自動的に選択する。
簡単に言うと、IQueryはデータ分析操作の抽象化と自動化であり、データアナリストのアプローチを模倣しています。
論文 参考訳(メタデータ) (2023-04-02T07:27:49Z) - Decoding Attention from Gaze: A Benchmark Dataset and End-to-End Models [6.642042615005632]
視線追跡は、生態学的に有効な環境において、人間の認知に関する豊富な行動データを提供する可能性がある。
本稿では,コンピュータビジョンツールを用いて,時間とともに参加者の過度な視覚的注意の軌跡を評価する作業である「アテンション・デコーディング」について検討する。
論文 参考訳(メタデータ) (2022-11-20T12:24:57Z) - Addressing Bias in Visualization Recommenders by Identifying Trends in
Training Data: Improving VizML Through a Statistical Analysis of the Plotly
Community Feed [55.41644538483948]
機械学習は、高いスケーラビリティと表現力のために、視覚化レコメンデーションに対する有望なアプローチである。
本研究は,統計的解析によりトレーニングデータの傾向を特定することで,機械学習可視化推薦システムにおけるトレーニングバイアスに対処することを目的とする。
論文 参考訳(メタデータ) (2022-03-09T18:36:46Z) - CLIP-Event: Connecting Text and Images with Event Structures [123.31452120399827]
視覚言語事前学習モデルを適用したコントラスト学習フレームワークを提案する。
我々は、イベント構造知識を得るために、テキスト情報抽出技術を利用する。
実験により、ゼロショットCLIP-Eventは引数抽出において最先端の教師付きモデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-01-13T17:03:57Z) - Towards Robust Visual Information Extraction in Real World: New Dataset
and Novel Solution [30.438041837029875]
実世界のシナリオに向けた堅牢な視覚情報抽出システム(VIES)を提案する。
VIESは、同時テキスト検出、認識、情報抽出のための統一されたエンドツーエンドのトレーニング可能なフレームワークです。
テキストスポッティングと視覚情報抽出の両方の中国初のベンチマークであるephoieと呼ばれる完全注釈付きデータセットを構築した。
論文 参考訳(メタデータ) (2021-01-24T11:05:24Z) - Salience Estimation with Multi-Attention Learning for Abstractive Text
Summarization [86.45110800123216]
テキスト要約のタスクでは、単語、フレーズ、文のサリエンス推定が重要な要素である。
本稿では,サラレンス推定のための2つの新しい注目学習要素を含むマルチアテンション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-07T02:38:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。