Piecewise-constant Neural ODEs
- URL: http://arxiv.org/abs/2106.06621v1
- Date: Fri, 11 Jun 2021 21:46:55 GMT
- Title: Piecewise-constant Neural ODEs
- Authors: Sam Greydanus, Stefan Lee, Alan Fern
- Abstract summary: We make a piecewise-constant approximation to Neural ODEs to mitigate these issues.
Our model can be integrated exactly via Euler integration and can generate autoregressive samples in 3-20 times fewer steps than comparable RNN and ODE-RNN models.
- Score: 41.116259317376475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks are a popular tool for modeling sequential data but they
generally do not treat time as a continuous variable. Neural ODEs represent an
important exception: they parameterize the time derivative of a hidden state
with a neural network and then integrate over arbitrary amounts of time. But
these parameterizations, which have arbitrary curvature, can be hard to
integrate and thus train and evaluate. In this paper, we propose making a
piecewise-constant approximation to Neural ODEs to mitigate these issues. Our
model can be integrated exactly via Euler integration and can generate
autoregressive samples in 3-20 times fewer steps than comparable RNN and
ODE-RNN models. We evaluate our model on several synthetic physics tasks and a
planning task inspired by the game of billiards. We find that it matches the
performance of baseline approaches while requiring less time to train and
evaluate.
Related papers
- Neural Differential Recurrent Neural Network with Adaptive Time Steps [11.999568208578799]
We propose an RNN-based model, called RNN-ODE-Adap, that uses a neural ODE to represent the time development of the hidden states.
We adaptively select time steps based on the steepness of changes of the data over time so as to train the model more efficiently for the "spike-like" time series.
arXiv Detail & Related papers (2023-06-02T16:46:47Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - On the balance between the training time and interpretability of neural
ODE for time series modelling [77.34726150561087]
The paper shows that modern neural ODE cannot be reduced to simpler models for time-series modelling applications.
The complexity of neural ODE is compared to or exceeds the conventional time-series modelling tools.
We propose a new view on time-series modelling using combined neural networks and an ODE system approach.
arXiv Detail & Related papers (2022-06-07T13:49:40Z) - Neural Flows: Efficient Alternative to Neural ODEs [8.01886971335823]
We propose an alternative by directly modeling the solution curves - the flow of an ODE - with a neural network.
This immediately eliminates the need for expensive numerical solvers while still maintaining the modeling capability of neural ODEs.
arXiv Detail & Related papers (2021-10-25T15:24:45Z) - Representation learning for neural population activity with Neural Data
Transformers [3.4376560669160394]
We introduce the Neural Data Transformer (NDT), a non-recurrent alternative to explicit dynamics models.
NDT enables 3.9ms inference, well within the loop time of real-time applications and more than 6 times faster than recurrent baselines.
arXiv Detail & Related papers (2021-08-02T23:36:39Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Neural Ordinary Differential Equation based Recurrent Neural Network
Model [0.7233897166339269]
differential equations are a promising new member in the neural network family.
This paper explores the strength of the ordinary differential equation (ODE) is explored with a new extension.
Two new ODE-based RNN models (GRU-ODE model and LSTM-ODE) can compute the hidden state and cell state at any point of time using an ODE solver.
Experiments show that these new ODE based RNN models require less training time than Latent ODEs and conventional Neural ODEs.
arXiv Detail & Related papers (2020-05-20T01:02:29Z) - Time Dependence in Non-Autonomous Neural ODEs [74.78386661760662]
We propose a novel family of Neural ODEs with time-varying weights.
We outperform previous Neural ODE variants in both speed and representational capacity.
arXiv Detail & Related papers (2020-05-05T01:41:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.